This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfseq . Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwfseqlem4.g | ⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| pwfseqlem4.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | ||
| pwfseqlem4.h | ⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) | ||
| pwfseqlem4.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) | ||
| pwfseqlem4.k | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) | ||
| pwfseqlem4.d | ⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | ||
| Assertion | pwfseqlem1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∖ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfseqlem4.g | ⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 2 | pwfseqlem4.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | |
| 3 | pwfseqlem4.h | ⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) | |
| 4 | pwfseqlem4.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) | |
| 5 | pwfseqlem4.k | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) | |
| 6 | pwfseqlem4.d | ⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | |
| 7 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 8 | f1f | ⊢ ( 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → 𝐺 : 𝒫 𝐴 ⟶ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 : 𝒫 𝐴 ⟶ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 10 | ssrab2 | ⊢ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ⊆ 𝑥 | |
| 11 | simprl1 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) → 𝑥 ⊆ 𝐴 ) | |
| 12 | 4 11 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 ⊆ 𝐴 ) |
| 13 | 10 12 | sstrid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ⊆ 𝐴 ) |
| 14 | vex | ⊢ 𝑥 ∈ V | |
| 15 | 14 | rabex | ⊢ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ∈ V |
| 16 | 15 | elpw | ⊢ ( { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ∈ 𝒫 𝐴 ↔ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ⊆ 𝐴 ) |
| 17 | 13 16 | sylibr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ∈ 𝒫 𝐴 ) |
| 18 | 9 17 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 19 | 6 18 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 20 | pm5.19 | ⊢ ¬ ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | |
| 21 | 5 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) |
| 22 | f1f | ⊢ ( 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ⟶ 𝑥 ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ⟶ 𝑥 ) |
| 24 | ffvelcdm | ⊢ ( ( 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ⟶ 𝑥 ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ) | |
| 25 | 23 24 | sylancom | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ) |
| 26 | f1f1orn | ⊢ ( 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1-onto→ ran 𝐾 ) | |
| 27 | 21 26 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1-onto→ ran 𝐾 ) |
| 28 | f1ocnvfv1 | ⊢ ( ( 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1-onto→ ran 𝐾 ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) = 𝐷 ) | |
| 29 | 27 28 | sylancom | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) = 𝐷 ) |
| 30 | f1fn | ⊢ ( 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → 𝐺 Fn 𝒫 𝐴 ) | |
| 31 | 7 30 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 Fn 𝒫 𝐴 ) |
| 32 | fnfvelrn | ⊢ ( ( 𝐺 Fn 𝒫 𝐴 ∧ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ∈ 𝒫 𝐴 ) → ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ∈ ran 𝐺 ) | |
| 33 | 31 17 32 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ∈ ran 𝐺 ) |
| 34 | 6 33 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ran 𝐺 ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → 𝐷 ∈ ran 𝐺 ) |
| 36 | 29 35 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ) |
| 37 | fveq2 | ⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( ◡ 𝐾 ‘ 𝑦 ) = ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) | |
| 38 | 37 | eleq1d | ⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( ( ◡ 𝐾 ‘ 𝑦 ) ∈ ran 𝐺 ↔ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ) ) |
| 39 | id | ⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → 𝑦 = ( 𝐾 ‘ 𝐷 ) ) | |
| 40 | 2fveq3 | ⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) = ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) | |
| 41 | 39 40 | eleq12d | ⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ↔ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) |
| 42 | 41 | notbid | ⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( ¬ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) |
| 43 | 38 42 | anbi12d | ⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( ( ( ◡ 𝐾 ‘ 𝑦 ) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) ↔ ( ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ∧ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) ) |
| 44 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( ◡ 𝐾 ‘ 𝑤 ) = ( ◡ 𝐾 ‘ 𝑦 ) ) | |
| 45 | 44 | eleq1d | ⊢ ( 𝑤 = 𝑦 → ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ↔ ( ◡ 𝐾 ‘ 𝑦 ) ∈ ran 𝐺 ) ) |
| 46 | id | ⊢ ( 𝑤 = 𝑦 → 𝑤 = 𝑦 ) | |
| 47 | 2fveq3 | ⊢ ( 𝑤 = 𝑦 → ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) = ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) | |
| 48 | 46 47 | eleq12d | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ↔ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) ) |
| 49 | 48 | notbid | ⊢ ( 𝑤 = 𝑦 → ( ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ↔ ¬ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) ) |
| 50 | 45 49 | anbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) ↔ ( ( ◡ 𝐾 ‘ 𝑦 ) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) ) ) |
| 51 | 50 | cbvrabv | ⊢ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } = { 𝑦 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑦 ) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) } |
| 52 | 43 51 | elrab2 | ⊢ ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ( ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ∧ ( ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ∧ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) ) |
| 53 | anass | ⊢ ( ( ( ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ∧ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ) ∧ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ↔ ( ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ∧ ( ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ∧ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) ) | |
| 54 | 52 53 | bitr4i | ⊢ ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ( ( ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ∧ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ) ∧ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) |
| 55 | 54 | baib | ⊢ ( ( ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ∧ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ) → ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) |
| 56 | 25 36 55 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) |
| 57 | 29 6 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) |
| 58 | 57 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) = ( ◡ 𝐺 ‘ ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) ) |
| 59 | f1f1orn | ⊢ ( 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → 𝐺 : 𝒫 𝐴 –1-1-onto→ ran 𝐺 ) | |
| 60 | 7 59 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 : 𝒫 𝐴 –1-1-onto→ ran 𝐺 ) |
| 61 | f1ocnvfv1 | ⊢ ( ( 𝐺 : 𝒫 𝐴 –1-1-onto→ ran 𝐺 ∧ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ∈ 𝒫 𝐴 ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) = { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) | |
| 62 | 60 17 61 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) = { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) = { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
| 64 | 58 63 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) = { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
| 65 | 64 | eleq2d | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ↔ ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) |
| 66 | 65 | notbid | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) |
| 67 | 56 66 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) |
| 68 | 67 | ex | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) → ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) ) |
| 69 | 20 68 | mtoi | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) |
| 70 | 19 69 | eldifd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∖ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ) |