This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass of the intersection of a restricted class abstraction. (Contributed by NM, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssintrab | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } | |
| 2 | 1 | inteqi | ⊢ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } |
| 3 | 2 | sseq2i | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝐴 ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 4 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝐴 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) ) | |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝐴 ⊆ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) ) |
| 6 | ssintab | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝐴 ⊆ 𝑥 ) ) | |
| 7 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |
| 9 | 3 8 | bitri | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) |