This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthaus | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) → ( ∏t ‘ 𝐹 ) ∈ Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haustop | ⊢ ( 𝑥 ∈ Haus → 𝑥 ∈ Top ) | |
| 2 | 1 | ssriv | ⊢ Haus ⊆ Top |
| 3 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ Haus ∧ Haus ⊆ Top ) → 𝐹 : 𝐴 ⟶ Top ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐹 : 𝐴 ⟶ Haus → 𝐹 : 𝐴 ⟶ Top ) |
| 5 | pttop | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∏t ‘ 𝐹 ) ∈ Top ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) → ( ∏t ‘ 𝐹 ) ∈ Top ) |
| 7 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ) | |
| 8 | eqid | ⊢ ( ∏t ‘ 𝐹 ) = ( ∏t ‘ 𝐹 ) | |
| 9 | 8 | ptuni | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 10 | 4 9 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 12 | 7 11 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 13 | ixpfn | ⊢ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) → 𝑥 Fn 𝐴 ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → 𝑥 Fn 𝐴 ) |
| 15 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) | |
| 16 | 15 11 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → 𝑦 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 17 | ixpfn | ⊢ ( 𝑦 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) → 𝑦 Fn 𝐴 ) | |
| 18 | 16 17 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → 𝑦 Fn 𝐴 ) |
| 19 | eqfnfv | ⊢ ( ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) → ( 𝑥 = 𝑦 ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑘 ) ) ) | |
| 20 | 14 18 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → ( 𝑥 = 𝑦 ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑘 ) ) ) |
| 21 | 20 | necon3abid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → ( 𝑥 ≠ 𝑦 ↔ ¬ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑘 ) ) ) |
| 22 | rexnal | ⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ ( 𝑥 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑘 ) ↔ ¬ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑘 ) ) | |
| 23 | df-ne | ⊢ ( ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ↔ ¬ ( 𝑥 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑘 ) ) | |
| 24 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) → 𝐹 : 𝐴 ⟶ Haus ) | |
| 25 | simprl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) → 𝑘 ∈ 𝐴 ) | |
| 26 | 24 25 | ffvelcdmd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ Haus ) |
| 27 | vex | ⊢ 𝑥 ∈ V | |
| 28 | 27 | elixp | ⊢ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑥 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 29 | 28 | simprbi | ⊢ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 30 | 12 29 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 31 | 30 | r19.21bi | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 32 | 31 | adantrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) → ( 𝑥 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 33 | vex | ⊢ 𝑦 ∈ V | |
| 34 | 33 | elixp | ⊢ ( 𝑦 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑦 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑦 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 35 | 34 | simprbi | ⊢ ( 𝑦 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑦 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 36 | 16 35 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑦 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 37 | 36 | r19.21bi | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑦 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 38 | 37 | adantrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) → ( 𝑦 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 39 | simprr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) → ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) | |
| 40 | eqid | ⊢ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) | |
| 41 | 40 | hausnei | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ Haus ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑦 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) → ∃ 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∃ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 42 | 26 32 38 39 41 | syl13anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) → ∃ 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∃ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 43 | simp-4l | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝐴 ∈ 𝑉 ) | |
| 44 | 4 | ad4antlr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝐹 : 𝐴 ⟶ Top ) |
| 45 | 25 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝑘 ∈ 𝐴 ) |
| 46 | eqid | ⊢ ∪ ( ∏t ‘ 𝐹 ) = ∪ ( ∏t ‘ 𝐹 ) | |
| 47 | 46 8 | ptpjcn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) ∈ ( ( ∏t ‘ 𝐹 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 48 | 43 44 45 47 | syl3anc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) ∈ ( ( ∏t ‘ 𝐹 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 49 | simprll | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ) | |
| 50 | eqid | ⊢ ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) = ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) | |
| 51 | 50 | mptpreima | ⊢ ( ◡ ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑚 ) = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } |
| 52 | cnima | ⊢ ( ( ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) ∈ ( ( ∏t ‘ 𝐹 ) Cn ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ) → ( ◡ ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑚 ) ∈ ( ∏t ‘ 𝐹 ) ) | |
| 53 | 51 52 | eqeltrrid | ⊢ ( ( ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) ∈ ( ( ∏t ‘ 𝐹 ) Cn ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ) → { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∈ ( ∏t ‘ 𝐹 ) ) |
| 54 | 48 49 53 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∈ ( ∏t ‘ 𝐹 ) ) |
| 55 | simprlr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) | |
| 56 | 50 | mptpreima | ⊢ ( ◡ ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑛 ) = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } |
| 57 | cnima | ⊢ ( ( ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) ∈ ( ( ∏t ‘ 𝐹 ) Cn ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) → ( ◡ ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑛 ) ∈ ( ∏t ‘ 𝐹 ) ) | |
| 58 | 56 57 | eqeltrrid | ⊢ ( ( ( 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ↦ ( 𝑧 ‘ 𝑘 ) ) ∈ ( ( ∏t ‘ 𝐹 ) Cn ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) → { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ∈ ( ∏t ‘ 𝐹 ) ) |
| 59 | 48 55 58 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ∈ ( ∏t ‘ 𝐹 ) ) |
| 60 | fveq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) | |
| 61 | 60 | eleq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 ↔ ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ) ) |
| 62 | 7 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ) |
| 63 | simprr1 | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ) | |
| 64 | 61 62 63 | elrabd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝑥 ∈ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ) |
| 65 | fveq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑘 ) ) | |
| 66 | 65 | eleq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 ↔ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ) ) |
| 67 | 15 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) |
| 68 | simprr2 | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ) | |
| 69 | 66 67 68 | elrabd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝑦 ∈ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ) |
| 70 | inrab | ⊢ ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ) = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 ) } | |
| 71 | simprr3 | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ( 𝑚 ∩ 𝑛 ) = ∅ ) | |
| 72 | inelcm | ⊢ ( ( ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 ) → ( 𝑚 ∩ 𝑛 ) ≠ ∅ ) | |
| 73 | 72 | necon2bi | ⊢ ( ( 𝑚 ∩ 𝑛 ) = ∅ → ¬ ( ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 ) ) |
| 74 | 71 73 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ¬ ( ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 ) ) |
| 75 | 74 | ralrimivw | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ∀ 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ¬ ( ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 ) ) |
| 76 | rabeq0 | ⊢ ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 ) } = ∅ ↔ ∀ 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ¬ ( ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 ) ) | |
| 77 | 75 76 | sylibr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 ) } = ∅ ) |
| 78 | 70 77 | eqtrid | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ) = ∅ ) |
| 79 | eleq2 | ⊢ ( 𝑢 = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ) ) | |
| 80 | ineq1 | ⊢ ( 𝑢 = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } → ( 𝑢 ∩ 𝑣 ) = ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ 𝑣 ) ) | |
| 81 | 80 | eqeq1d | ⊢ ( 𝑢 = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } → ( ( 𝑢 ∩ 𝑣 ) = ∅ ↔ ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ 𝑣 ) = ∅ ) ) |
| 82 | 79 81 | 3anbi13d | ⊢ ( 𝑢 = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } → ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ↔ ( 𝑥 ∈ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∧ 𝑦 ∈ 𝑣 ∧ ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ 𝑣 ) = ∅ ) ) ) |
| 83 | eleq2 | ⊢ ( 𝑣 = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ) ) | |
| 84 | ineq2 | ⊢ ( 𝑣 = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } → ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ 𝑣 ) = ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ) ) | |
| 85 | 84 | eqeq1d | ⊢ ( 𝑣 = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } → ( ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ 𝑣 ) = ∅ ↔ ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ) = ∅ ) ) |
| 86 | 83 85 | 3anbi23d | ⊢ ( 𝑣 = { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } → ( ( 𝑥 ∈ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∧ 𝑦 ∈ 𝑣 ∧ ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ 𝑣 ) = ∅ ) ↔ ( 𝑥 ∈ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∧ 𝑦 ∈ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ∧ ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ) = ∅ ) ) ) |
| 87 | 82 86 | rspc2ev | ⊢ ( ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∈ ( ∏t ‘ 𝐹 ) ∧ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ∈ ( ∏t ‘ 𝐹 ) ∧ ( 𝑥 ∈ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∧ 𝑦 ∈ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ∧ ( { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑚 } ∩ { 𝑧 ∈ ∪ ( ∏t ‘ 𝐹 ) ∣ ( 𝑧 ‘ 𝑘 ) ∈ 𝑛 } ) = ∅ ) ) → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 88 | 54 59 64 69 78 87 | syl113anc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 89 | 88 | expr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) ∧ ( 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 90 | 89 | rexlimdvva | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) → ( ∃ 𝑚 ∈ ( 𝐹 ‘ 𝑘 ) ∃ 𝑛 ∈ ( 𝐹 ‘ 𝑘 ) ( ( 𝑥 ‘ 𝑘 ) ∈ 𝑚 ∧ ( 𝑦 ‘ 𝑘 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 91 | 42 90 | mpd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) ) ) → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 92 | 91 | expr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑘 ) ≠ ( 𝑦 ‘ 𝑘 ) → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 93 | 23 92 | biimtrrid | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ ( 𝑥 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑘 ) → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 94 | 93 | rexlimdva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → ( ∃ 𝑘 ∈ 𝐴 ¬ ( 𝑥 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑘 ) → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 95 | 22 94 | biimtrrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → ( ¬ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) = ( 𝑦 ‘ 𝑘 ) → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 96 | 21 95 | sylbid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) ∧ ( 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∧ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 97 | 96 | ralrimivva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) → ∀ 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∀ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
| 98 | 46 | ishaus | ⊢ ( ( ∏t ‘ 𝐹 ) ∈ Haus ↔ ( ( ∏t ‘ 𝐹 ) ∈ Top ∧ ∀ 𝑥 ∈ ∪ ( ∏t ‘ 𝐹 ) ∀ 𝑦 ∈ ∪ ( ∏t ‘ 𝐹 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ ( ∏t ‘ 𝐹 ) ∃ 𝑣 ∈ ( ∏t ‘ 𝐹 ) ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) ) |
| 99 | 6 97 98 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Haus ) → ( ∏t ‘ 𝐹 ) ∈ Haus ) |