This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthaus | |- ( ( A e. V /\ F : A --> Haus ) -> ( Xt_ ` F ) e. Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haustop | |- ( x e. Haus -> x e. Top ) |
|
| 2 | 1 | ssriv | |- Haus C_ Top |
| 3 | fss | |- ( ( F : A --> Haus /\ Haus C_ Top ) -> F : A --> Top ) |
|
| 4 | 2 3 | mpan2 | |- ( F : A --> Haus -> F : A --> Top ) |
| 5 | pttop | |- ( ( A e. V /\ F : A --> Top ) -> ( Xt_ ` F ) e. Top ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A e. V /\ F : A --> Haus ) -> ( Xt_ ` F ) e. Top ) |
| 7 | simprl | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> x e. U. ( Xt_ ` F ) ) |
|
| 8 | eqid | |- ( Xt_ ` F ) = ( Xt_ ` F ) |
|
| 9 | 8 | ptuni | |- ( ( A e. V /\ F : A --> Top ) -> X_ k e. A U. ( F ` k ) = U. ( Xt_ ` F ) ) |
| 10 | 4 9 | sylan2 | |- ( ( A e. V /\ F : A --> Haus ) -> X_ k e. A U. ( F ` k ) = U. ( Xt_ ` F ) ) |
| 11 | 10 | adantr | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> X_ k e. A U. ( F ` k ) = U. ( Xt_ ` F ) ) |
| 12 | 7 11 | eleqtrrd | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> x e. X_ k e. A U. ( F ` k ) ) |
| 13 | ixpfn | |- ( x e. X_ k e. A U. ( F ` k ) -> x Fn A ) |
|
| 14 | 12 13 | syl | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> x Fn A ) |
| 15 | simprr | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> y e. U. ( Xt_ ` F ) ) |
|
| 16 | 15 11 | eleqtrrd | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> y e. X_ k e. A U. ( F ` k ) ) |
| 17 | ixpfn | |- ( y e. X_ k e. A U. ( F ` k ) -> y Fn A ) |
|
| 18 | 16 17 | syl | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> y Fn A ) |
| 19 | eqfnfv | |- ( ( x Fn A /\ y Fn A ) -> ( x = y <-> A. k e. A ( x ` k ) = ( y ` k ) ) ) |
|
| 20 | 14 18 19 | syl2anc | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> ( x = y <-> A. k e. A ( x ` k ) = ( y ` k ) ) ) |
| 21 | 20 | necon3abid | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> ( x =/= y <-> -. A. k e. A ( x ` k ) = ( y ` k ) ) ) |
| 22 | rexnal | |- ( E. k e. A -. ( x ` k ) = ( y ` k ) <-> -. A. k e. A ( x ` k ) = ( y ` k ) ) |
|
| 23 | df-ne | |- ( ( x ` k ) =/= ( y ` k ) <-> -. ( x ` k ) = ( y ` k ) ) |
|
| 24 | simpllr | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) -> F : A --> Haus ) |
|
| 25 | simprl | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) -> k e. A ) |
|
| 26 | 24 25 | ffvelcdmd | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) -> ( F ` k ) e. Haus ) |
| 27 | vex | |- x e. _V |
|
| 28 | 27 | elixp | |- ( x e. X_ k e. A U. ( F ` k ) <-> ( x Fn A /\ A. k e. A ( x ` k ) e. U. ( F ` k ) ) ) |
| 29 | 28 | simprbi | |- ( x e. X_ k e. A U. ( F ` k ) -> A. k e. A ( x ` k ) e. U. ( F ` k ) ) |
| 30 | 12 29 | syl | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> A. k e. A ( x ` k ) e. U. ( F ` k ) ) |
| 31 | 30 | r19.21bi | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ k e. A ) -> ( x ` k ) e. U. ( F ` k ) ) |
| 32 | 31 | adantrr | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) -> ( x ` k ) e. U. ( F ` k ) ) |
| 33 | vex | |- y e. _V |
|
| 34 | 33 | elixp | |- ( y e. X_ k e. A U. ( F ` k ) <-> ( y Fn A /\ A. k e. A ( y ` k ) e. U. ( F ` k ) ) ) |
| 35 | 34 | simprbi | |- ( y e. X_ k e. A U. ( F ` k ) -> A. k e. A ( y ` k ) e. U. ( F ` k ) ) |
| 36 | 16 35 | syl | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> A. k e. A ( y ` k ) e. U. ( F ` k ) ) |
| 37 | 36 | r19.21bi | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ k e. A ) -> ( y ` k ) e. U. ( F ` k ) ) |
| 38 | 37 | adantrr | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) -> ( y ` k ) e. U. ( F ` k ) ) |
| 39 | simprr | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) -> ( x ` k ) =/= ( y ` k ) ) |
|
| 40 | eqid | |- U. ( F ` k ) = U. ( F ` k ) |
|
| 41 | 40 | hausnei | |- ( ( ( F ` k ) e. Haus /\ ( ( x ` k ) e. U. ( F ` k ) /\ ( y ` k ) e. U. ( F ` k ) /\ ( x ` k ) =/= ( y ` k ) ) ) -> E. m e. ( F ` k ) E. n e. ( F ` k ) ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) |
| 42 | 26 32 38 39 41 | syl13anc | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) -> E. m e. ( F ` k ) E. n e. ( F ` k ) ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) |
| 43 | simp-4l | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> A e. V ) |
|
| 44 | 4 | ad4antlr | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> F : A --> Top ) |
| 45 | 25 | adantr | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> k e. A ) |
| 46 | eqid | |- U. ( Xt_ ` F ) = U. ( Xt_ ` F ) |
|
| 47 | 46 8 | ptpjcn | |- ( ( A e. V /\ F : A --> Top /\ k e. A ) -> ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) e. ( ( Xt_ ` F ) Cn ( F ` k ) ) ) |
| 48 | 43 44 45 47 | syl3anc | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) e. ( ( Xt_ ` F ) Cn ( F ` k ) ) ) |
| 49 | simprll | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> m e. ( F ` k ) ) |
|
| 50 | eqid | |- ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) = ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) |
|
| 51 | 50 | mptpreima | |- ( `' ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) " m ) = { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } |
| 52 | cnima | |- ( ( ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) e. ( ( Xt_ ` F ) Cn ( F ` k ) ) /\ m e. ( F ` k ) ) -> ( `' ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) " m ) e. ( Xt_ ` F ) ) |
|
| 53 | 51 52 | eqeltrrid | |- ( ( ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) e. ( ( Xt_ ` F ) Cn ( F ` k ) ) /\ m e. ( F ` k ) ) -> { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } e. ( Xt_ ` F ) ) |
| 54 | 48 49 53 | syl2anc | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } e. ( Xt_ ` F ) ) |
| 55 | simprlr | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> n e. ( F ` k ) ) |
|
| 56 | 50 | mptpreima | |- ( `' ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) " n ) = { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } |
| 57 | cnima | |- ( ( ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) e. ( ( Xt_ ` F ) Cn ( F ` k ) ) /\ n e. ( F ` k ) ) -> ( `' ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) " n ) e. ( Xt_ ` F ) ) |
|
| 58 | 56 57 | eqeltrrid | |- ( ( ( z e. U. ( Xt_ ` F ) |-> ( z ` k ) ) e. ( ( Xt_ ` F ) Cn ( F ` k ) ) /\ n e. ( F ` k ) ) -> { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } e. ( Xt_ ` F ) ) |
| 59 | 48 55 58 | syl2anc | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } e. ( Xt_ ` F ) ) |
| 60 | fveq1 | |- ( z = x -> ( z ` k ) = ( x ` k ) ) |
|
| 61 | 60 | eleq1d | |- ( z = x -> ( ( z ` k ) e. m <-> ( x ` k ) e. m ) ) |
| 62 | 7 | ad2antrr | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> x e. U. ( Xt_ ` F ) ) |
| 63 | simprr1 | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> ( x ` k ) e. m ) |
|
| 64 | 61 62 63 | elrabd | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> x e. { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } ) |
| 65 | fveq1 | |- ( z = y -> ( z ` k ) = ( y ` k ) ) |
|
| 66 | 65 | eleq1d | |- ( z = y -> ( ( z ` k ) e. n <-> ( y ` k ) e. n ) ) |
| 67 | 15 | ad2antrr | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> y e. U. ( Xt_ ` F ) ) |
| 68 | simprr2 | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> ( y ` k ) e. n ) |
|
| 69 | 66 67 68 | elrabd | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> y e. { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } ) |
| 70 | inrab | |- ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } ) = { z e. U. ( Xt_ ` F ) | ( ( z ` k ) e. m /\ ( z ` k ) e. n ) } |
|
| 71 | simprr3 | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> ( m i^i n ) = (/) ) |
|
| 72 | inelcm | |- ( ( ( z ` k ) e. m /\ ( z ` k ) e. n ) -> ( m i^i n ) =/= (/) ) |
|
| 73 | 72 | necon2bi | |- ( ( m i^i n ) = (/) -> -. ( ( z ` k ) e. m /\ ( z ` k ) e. n ) ) |
| 74 | 71 73 | syl | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> -. ( ( z ` k ) e. m /\ ( z ` k ) e. n ) ) |
| 75 | 74 | ralrimivw | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> A. z e. U. ( Xt_ ` F ) -. ( ( z ` k ) e. m /\ ( z ` k ) e. n ) ) |
| 76 | rabeq0 | |- ( { z e. U. ( Xt_ ` F ) | ( ( z ` k ) e. m /\ ( z ` k ) e. n ) } = (/) <-> A. z e. U. ( Xt_ ` F ) -. ( ( z ` k ) e. m /\ ( z ` k ) e. n ) ) |
|
| 77 | 75 76 | sylibr | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> { z e. U. ( Xt_ ` F ) | ( ( z ` k ) e. m /\ ( z ` k ) e. n ) } = (/) ) |
| 78 | 70 77 | eqtrid | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } ) = (/) ) |
| 79 | eleq2 | |- ( u = { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } -> ( x e. u <-> x e. { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } ) ) |
|
| 80 | ineq1 | |- ( u = { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } -> ( u i^i v ) = ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i v ) ) |
|
| 81 | 80 | eqeq1d | |- ( u = { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } -> ( ( u i^i v ) = (/) <-> ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i v ) = (/) ) ) |
| 82 | 79 81 | 3anbi13d | |- ( u = { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } -> ( ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) <-> ( x e. { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } /\ y e. v /\ ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i v ) = (/) ) ) ) |
| 83 | eleq2 | |- ( v = { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } -> ( y e. v <-> y e. { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } ) ) |
|
| 84 | ineq2 | |- ( v = { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } -> ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i v ) = ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } ) ) |
|
| 85 | 84 | eqeq1d | |- ( v = { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } -> ( ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i v ) = (/) <-> ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } ) = (/) ) ) |
| 86 | 83 85 | 3anbi23d | |- ( v = { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } -> ( ( x e. { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } /\ y e. v /\ ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i v ) = (/) ) <-> ( x e. { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } /\ y e. { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } /\ ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } ) = (/) ) ) ) |
| 87 | 82 86 | rspc2ev | |- ( ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } e. ( Xt_ ` F ) /\ { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } e. ( Xt_ ` F ) /\ ( x e. { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } /\ y e. { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } /\ ( { z e. U. ( Xt_ ` F ) | ( z ` k ) e. m } i^i { z e. U. ( Xt_ ` F ) | ( z ` k ) e. n } ) = (/) ) ) -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) |
| 88 | 54 59 64 69 78 87 | syl113anc | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( ( m e. ( F ` k ) /\ n e. ( F ` k ) ) /\ ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) ) ) -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) |
| 89 | 88 | expr | |- ( ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) /\ ( m e. ( F ` k ) /\ n e. ( F ` k ) ) ) -> ( ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) ) |
| 90 | 89 | rexlimdvva | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) -> ( E. m e. ( F ` k ) E. n e. ( F ` k ) ( ( x ` k ) e. m /\ ( y ` k ) e. n /\ ( m i^i n ) = (/) ) -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) ) |
| 91 | 42 90 | mpd | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ ( k e. A /\ ( x ` k ) =/= ( y ` k ) ) ) -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) |
| 92 | 91 | expr | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ k e. A ) -> ( ( x ` k ) =/= ( y ` k ) -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) ) |
| 93 | 23 92 | biimtrrid | |- ( ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) /\ k e. A ) -> ( -. ( x ` k ) = ( y ` k ) -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) ) |
| 94 | 93 | rexlimdva | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> ( E. k e. A -. ( x ` k ) = ( y ` k ) -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) ) |
| 95 | 22 94 | biimtrrid | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> ( -. A. k e. A ( x ` k ) = ( y ` k ) -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) ) |
| 96 | 21 95 | sylbid | |- ( ( ( A e. V /\ F : A --> Haus ) /\ ( x e. U. ( Xt_ ` F ) /\ y e. U. ( Xt_ ` F ) ) ) -> ( x =/= y -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) ) |
| 97 | 96 | ralrimivva | |- ( ( A e. V /\ F : A --> Haus ) -> A. x e. U. ( Xt_ ` F ) A. y e. U. ( Xt_ ` F ) ( x =/= y -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) ) |
| 98 | 46 | ishaus | |- ( ( Xt_ ` F ) e. Haus <-> ( ( Xt_ ` F ) e. Top /\ A. x e. U. ( Xt_ ` F ) A. y e. U. ( Xt_ ` F ) ( x =/= y -> E. u e. ( Xt_ ` F ) E. v e. ( Xt_ ` F ) ( x e. u /\ y e. v /\ ( u i^i v ) = (/) ) ) ) ) |
| 99 | 6 97 98 | sylanbrc | |- ( ( A e. V /\ F : A --> Haus ) -> ( Xt_ ` F ) e. Haus ) |