This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcmp.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| ptcmp.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | ||
| ptcmp.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ptcmp.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) | ||
| ptcmp.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) | ||
| Assertion | ptcmplem5 | ⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmp.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 2 | ptcmp.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | |
| 3 | ptcmp.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | ptcmp.4 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) | |
| 5 | ptcmp.5 | ⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) | |
| 6 | 5 | elin1d | ⊢ ( 𝜑 → 𝑋 ∈ UFL ) |
| 7 | 1 2 3 4 5 | ptcmplem1 | ⊢ ( 𝜑 → ( 𝑋 = ∪ ( ran 𝑆 ∪ { 𝑋 } ) ∧ ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) ) ) |
| 8 | 7 | simpld | ⊢ ( 𝜑 → 𝑋 = ∪ ( ran 𝑆 ∪ { 𝑋 } ) ) |
| 9 | 7 | simprd | ⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) ) |
| 10 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 ran 𝑆 → 𝑦 ⊆ ran 𝑆 ) | |
| 11 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → 𝐴 ∈ 𝑉 ) |
| 12 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → 𝐹 : 𝐴 ⟶ Comp ) |
| 13 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → 𝑋 ∈ ( UFL ∩ dom card ) ) |
| 14 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → 𝑦 ⊆ ran 𝑆 ) | |
| 15 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → 𝑋 = ∪ 𝑦 ) | |
| 16 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) | |
| 17 | imaeq2 | ⊢ ( 𝑧 = 𝑢 → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑧 ) = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑧 = 𝑢 → ( ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑧 ) ∈ 𝑦 ↔ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑦 ) ) |
| 19 | 18 | cbvrabv | ⊢ { 𝑧 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑧 ) ∈ 𝑦 } = { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑦 } |
| 20 | 1 2 11 12 13 14 15 16 19 | ptcmplem4 | ⊢ ¬ ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 21 | iman | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ↔ ¬ ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) | |
| 22 | 20 21 | mpbir | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 23 | 22 | expr | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ ran 𝑆 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 24 | 10 23 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ran 𝑆 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 25 | 24 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑦 ∈ 𝒫 ran 𝑆 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 26 | velpw | ⊢ ( 𝑦 ∈ 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ↔ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) | |
| 27 | eldif | ⊢ ( 𝑦 ∈ ( 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∖ 𝒫 ran 𝑆 ) ↔ ( 𝑦 ∈ 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) ) | |
| 28 | elpwunsn | ⊢ ( 𝑦 ∈ ( 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∖ 𝒫 ran 𝑆 ) → 𝑋 ∈ 𝑦 ) | |
| 29 | 27 28 | sylbir | ⊢ ( ( 𝑦 ∈ 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → 𝑋 ∈ 𝑦 ) |
| 30 | 26 29 | sylanbr | ⊢ ( ( 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → 𝑋 ∈ 𝑦 ) |
| 31 | 30 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → 𝑋 ∈ 𝑦 ) |
| 32 | snssi | ⊢ ( 𝑋 ∈ 𝑦 → { 𝑋 } ⊆ 𝑦 ) | |
| 33 | 32 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ 𝑦 ) → { 𝑋 } ⊆ 𝑦 ) |
| 34 | snfi | ⊢ { 𝑋 } ∈ Fin | |
| 35 | elfpw | ⊢ ( { 𝑋 } ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( { 𝑋 } ⊆ 𝑦 ∧ { 𝑋 } ∈ Fin ) ) | |
| 36 | 33 34 35 | sylanblrc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ 𝑦 ) → { 𝑋 } ∈ ( 𝒫 𝑦 ∩ Fin ) ) |
| 37 | unisng | ⊢ ( 𝑋 ∈ 𝑦 → ∪ { 𝑋 } = 𝑋 ) | |
| 38 | 37 | eqcomd | ⊢ ( 𝑋 ∈ 𝑦 → 𝑋 = ∪ { 𝑋 } ) |
| 39 | 38 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ 𝑦 ) → 𝑋 = ∪ { 𝑋 } ) |
| 40 | unieq | ⊢ ( 𝑧 = { 𝑋 } → ∪ 𝑧 = ∪ { 𝑋 } ) | |
| 41 | 40 | rspceeqv | ⊢ ( ( { 𝑋 } ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ 𝑋 = ∪ { 𝑋 } ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 42 | 36 39 41 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ 𝑦 ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 43 | 42 | a1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ 𝑦 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 44 | 31 43 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 45 | 25 44 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 46 | 45 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ∧ 𝑋 = ∪ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 47 | 6 8 9 46 | alexsub | ⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) ∈ Comp ) |