This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if ~P ~P X is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp ). (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcmpg.1 | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | |
| ptcmpg.2 | ⊢ 𝑋 = ∪ 𝐽 | ||
| Assertion | ptcmpg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ 𝑋 ∈ ( UFL ∩ dom card ) ) → 𝐽 ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmpg.1 | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | |
| 2 | ptcmpg.2 | ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | nfcv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑎 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑎 ( 𝐹 ‘ 𝑘 ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑘 ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑎 ) ) “ 𝑏 ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑢 ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑎 ) ) “ 𝑏 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑎 ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) | |
| 8 | nfcv | ⊢ Ⅎ 𝑏 ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) | |
| 9 | fveq2 | ⊢ ( 𝑎 = 𝑘 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑎 = 𝑘 → ( 𝑤 ‘ 𝑎 ) = ( 𝑤 ‘ 𝑘 ) ) | |
| 11 | 10 | mpteq2dv | ⊢ ( 𝑎 = 𝑘 → ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑎 ) ) = ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 12 | 11 | cnveqd | ⊢ ( 𝑎 = 𝑘 → ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑎 ) ) = ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 13 | 12 | imaeq1d | ⊢ ( 𝑎 = 𝑘 → ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑎 ) ) “ 𝑏 ) = ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑏 ) ) |
| 14 | imaeq2 | ⊢ ( 𝑏 = 𝑢 → ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑏 ) = ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 15 | 13 14 | sylan9eq | ⊢ ( ( 𝑎 = 𝑘 ∧ 𝑏 = 𝑢 ) → ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑎 ) ) “ 𝑏 ) = ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 16 | 3 4 5 6 7 8 9 15 | cbvmpox | ⊢ ( 𝑎 ∈ 𝐴 , 𝑏 ∈ ( 𝐹 ‘ 𝑎 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑎 ) ) “ 𝑏 ) ) = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 17 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 18 | 17 | unieqd | ⊢ ( 𝑛 = 𝑚 → ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑚 ) ) |
| 19 | 18 | cbvixpv | ⊢ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = X 𝑚 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑚 ) |
| 20 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ 𝑋 ∈ ( UFL ∩ dom card ) ) → 𝐴 ∈ 𝑉 ) | |
| 21 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ 𝑋 ∈ ( UFL ∩ dom card ) ) → 𝐹 : 𝐴 ⟶ Comp ) | |
| 22 | cmptop | ⊢ ( 𝑘 ∈ Comp → 𝑘 ∈ Top ) | |
| 23 | 22 | ssriv | ⊢ Comp ⊆ Top |
| 24 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ Comp ∧ Comp ⊆ Top ) → 𝐹 : 𝐴 ⟶ Top ) | |
| 25 | 21 23 24 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ 𝑋 ∈ ( UFL ∩ dom card ) ) → 𝐹 : 𝐴 ⟶ Top ) |
| 26 | 1 | ptuni | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = ∪ 𝐽 ) |
| 27 | 20 25 26 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ 𝑋 ∈ ( UFL ∩ dom card ) ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = ∪ 𝐽 ) |
| 28 | 27 2 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ 𝑋 ∈ ( UFL ∩ dom card ) ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑋 ) |
| 29 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ 𝑋 ∈ ( UFL ∩ dom card ) ) → 𝑋 ∈ ( UFL ∩ dom card ) ) | |
| 30 | 28 29 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ 𝑋 ∈ ( UFL ∩ dom card ) ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ∈ ( UFL ∩ dom card ) ) |
| 31 | 16 19 20 21 30 | ptcmplem5 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ 𝑋 ∈ ( UFL ∩ dom card ) ) → ( ∏t ‘ 𝐹 ) ∈ Comp ) |
| 32 | 1 31 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ 𝑋 ∈ ( UFL ∩ dom card ) ) → 𝐽 ∈ Comp ) |