This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an extension of a power class. (Contributed by NM, 26-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpwunsn | ⊢ ( 𝐴 ∈ ( 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∖ 𝒫 𝐵 ) → 𝐶 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝐴 ∈ ( 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∖ 𝒫 𝐵 ) ↔ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∧ ¬ 𝐴 ∈ 𝒫 𝐵 ) ) | |
| 2 | elpwg | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) | |
| 3 | dfss3 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) | |
| 4 | 2 3 | bitrdi | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( 𝐴 ∈ 𝒫 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
| 5 | 4 | notbid | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( ¬ 𝐴 ∈ 𝒫 𝐵 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
| 6 | 5 | biimpa | ⊢ ( ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∧ ¬ 𝐴 ∈ 𝒫 𝐵 ) → ¬ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 7 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∧ ¬ 𝐴 ∈ 𝒫 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
| 9 | elpwi | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) | |
| 10 | ssel | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ { 𝐶 } ) ) ) | |
| 11 | elun | ⊢ ( 𝑥 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ { 𝐶 } ) ) | |
| 12 | elsni | ⊢ ( 𝑥 ∈ { 𝐶 } → 𝑥 = 𝐶 ) | |
| 13 | 12 | orim2i | ⊢ ( ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ { 𝐶 } ) → ( 𝑥 ∈ 𝐵 ∨ 𝑥 = 𝐶 ) ) |
| 14 | 13 | ord | ⊢ ( ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ { 𝐶 } ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶 ) ) |
| 15 | 11 14 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐵 ∪ { 𝐶 } ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶 ) ) |
| 16 | 15 | imim2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ { 𝐶 } ) ) → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶 ) ) ) |
| 17 | 16 | impd | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ { 𝐶 } ) ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑥 = 𝐶 ) ) |
| 18 | 9 10 17 | 3syl | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑥 = 𝐶 ) ) |
| 19 | eleq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 20 | 19 | biimpd | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) |
| 21 | 18 20 | syl6 | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) ) |
| 22 | 21 | expd | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) ) ) |
| 23 | 22 | com4r | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴 ) ) ) ) |
| 24 | 23 | pm2.43b | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴 ) ) ) |
| 25 | 24 | rexlimdv | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴 ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝐴 ) |
| 27 | 8 26 | syldan | ⊢ ( ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∧ ¬ 𝐴 ∈ 𝒫 𝐵 ) → 𝐶 ∈ 𝐴 ) |
| 28 | 1 27 | sylbi | ⊢ ( 𝐴 ∈ ( 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∖ 𝒫 𝐵 ) → 𝐶 ∈ 𝐴 ) |