This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psropprmul.y | ⊢ 𝑌 = ( 𝐼 mPwSer 𝑅 ) | |
| psropprmul.s | ⊢ 𝑆 = ( oppr ‘ 𝑅 ) | ||
| psropprmul.z | ⊢ 𝑍 = ( 𝐼 mPwSer 𝑆 ) | ||
| psropprmul.t | ⊢ · = ( .r ‘ 𝑌 ) | ||
| psropprmul.u | ⊢ ∙ = ( .r ‘ 𝑍 ) | ||
| psropprmul.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| Assertion | psropprmul | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝐺 · 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psropprmul.y | ⊢ 𝑌 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psropprmul.s | ⊢ 𝑆 = ( oppr ‘ 𝑅 ) | |
| 3 | psropprmul.z | ⊢ 𝑍 = ( 𝐼 mPwSer 𝑆 ) | |
| 4 | psropprmul.t | ⊢ · = ( .r ‘ 𝑌 ) | |
| 5 | psropprmul.u | ⊢ ∙ = ( .r ‘ 𝑍 ) | |
| 6 | psropprmul.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 9 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝑅 ∈ CMnd ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CMnd ) |
| 12 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 13 | 12 | rabex | ⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∈ V |
| 14 | 13 | rabex | ⊢ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ V |
| 15 | 14 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ V ) |
| 16 | simpll1 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → 𝑅 ∈ Ring ) | |
| 17 | eqid | ⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } | |
| 18 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) | |
| 19 | 1 7 17 6 18 | psrelbas | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝐺 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 21 | elrabi | ⊢ ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } → 𝑒 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) | |
| 22 | ffvelcdm | ⊢ ( ( 𝐺 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ∧ 𝑒 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝐺 ‘ 𝑒 ) ∈ ( Base ‘ 𝑅 ) ) | |
| 23 | 20 21 22 | syl2an | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝐺 ‘ 𝑒 ) ∈ ( Base ‘ 𝑅 ) ) |
| 24 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ 𝐵 ) | |
| 25 | 1 7 17 6 24 | psrelbas | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → 𝐹 : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 27 | ssrab2 | ⊢ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ⊆ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } | |
| 28 | eqid | ⊢ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } = { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } | |
| 29 | 17 28 | psrbagconcl | ⊢ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑒 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
| 30 | 29 | adantll | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑒 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
| 31 | 27 30 | sselid | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑒 ) ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) |
| 32 | 26 31 | ffvelcdmd | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 34 | 7 33 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐺 ‘ 𝑒 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 35 | 16 23 32 34 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 36 | 35 | fmpttd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) : { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ⟶ ( Base ‘ 𝑅 ) ) |
| 37 | mptexg | ⊢ ( { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ V → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∈ V ) | |
| 38 | 14 37 | mp1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∈ V ) |
| 39 | funmpt | ⊢ Fun ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) | |
| 40 | 39 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → Fun ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) |
| 41 | fvexd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 42 | 17 | psrbaglefi | ⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } → { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ Fin ) |
| 43 | 42 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ Fin ) |
| 44 | suppssdm | ⊢ ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) | |
| 45 | eqid | ⊢ ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) | |
| 46 | 45 | dmmptss | ⊢ dom ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } |
| 47 | 44 46 | sstri | ⊢ ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } |
| 48 | 47 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
| 49 | suppssfifsupp | ⊢ ( ( ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∈ V ∧ Fun ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ∈ Fin ∧ ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) | |
| 50 | 38 40 41 43 48 49 | syl32anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 51 | 17 28 | psrbagconf1o | ⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) : { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } –1-1-onto→ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
| 52 | 51 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) : { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } –1-1-onto→ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
| 53 | 7 8 11 15 36 50 52 | gsumf1o | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) |
| 54 | 17 28 | psrbagconcl | ⊢ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑐 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
| 55 | 54 | adantll | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − 𝑐 ) ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) |
| 56 | eqidd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) ) | |
| 57 | eqidd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) | |
| 58 | fveq2 | ⊢ ( 𝑒 = ( 𝑏 ∘f − 𝑐 ) → ( 𝐺 ‘ 𝑒 ) = ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) | |
| 59 | oveq2 | ⊢ ( 𝑒 = ( 𝑏 ∘f − 𝑐 ) → ( 𝑏 ∘f − 𝑒 ) = ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) | |
| 60 | 59 | fveq2d | ⊢ ( 𝑒 = ( 𝑏 ∘f − 𝑐 ) → ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) = ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) |
| 61 | 58 60 | oveq12d | ⊢ ( 𝑒 = ( 𝑏 ∘f − 𝑐 ) → ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) = ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) ) |
| 62 | 55 56 57 61 | fmptco | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
| 63 | reldmpsr | ⊢ Rel dom mPwSer | |
| 64 | 1 6 63 | strov2rcl | ⊢ ( 𝐺 ∈ 𝐵 → 𝐼 ∈ V ) |
| 65 | 64 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐼 ∈ V ) |
| 66 | 65 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → 𝐼 ∈ V ) |
| 67 | 17 | psrbagf | ⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 68 | 67 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 69 | 68 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 70 | elrabi | ⊢ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } → 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) | |
| 71 | 17 | psrbagf | ⊢ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } → 𝑐 : 𝐼 ⟶ ℕ0 ) |
| 72 | 70 71 | syl | ⊢ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } → 𝑐 : 𝐼 ⟶ ℕ0 ) |
| 73 | 72 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → 𝑐 : 𝐼 ⟶ ℕ0 ) |
| 74 | nn0cn | ⊢ ( 𝑒 ∈ ℕ0 → 𝑒 ∈ ℂ ) | |
| 75 | nn0cn | ⊢ ( 𝑓 ∈ ℕ0 → 𝑓 ∈ ℂ ) | |
| 76 | nncan | ⊢ ( ( 𝑒 ∈ ℂ ∧ 𝑓 ∈ ℂ ) → ( 𝑒 − ( 𝑒 − 𝑓 ) ) = 𝑓 ) | |
| 77 | 74 75 76 | syl2an | ⊢ ( ( 𝑒 ∈ ℕ0 ∧ 𝑓 ∈ ℕ0 ) → ( 𝑒 − ( 𝑒 − 𝑓 ) ) = 𝑓 ) |
| 78 | 77 | adantl | ⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) ∧ ( 𝑒 ∈ ℕ0 ∧ 𝑓 ∈ ℕ0 ) ) → ( 𝑒 − ( 𝑒 − 𝑓 ) ) = 𝑓 ) |
| 79 | 66 69 73 78 | caonncan | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) = 𝑐 ) |
| 80 | 79 | fveq2d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) = ( 𝐹 ‘ 𝑐 ) ) |
| 81 | 80 | oveq2d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) = ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑐 ) ) ) |
| 82 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 83 | 7 33 2 82 | opprmul | ⊢ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) = ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑐 ) ) |
| 84 | 81 83 | eqtr4di | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ) → ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) = ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) |
| 85 | 84 | mpteq2dva | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − ( 𝑏 ∘f − 𝑐 ) ) ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) |
| 86 | 62 85 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) |
| 87 | 86 | oveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( 𝑏 ∘f − 𝑐 ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
| 88 | 14 | mptex | ⊢ ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ∈ V |
| 89 | 88 | a1i | ⊢ ( 𝑅 ∈ Ring → ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ∈ V ) |
| 90 | id | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) | |
| 91 | 2 | fvexi | ⊢ 𝑆 ∈ V |
| 92 | 91 | a1i | ⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ V ) |
| 93 | 2 7 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) |
| 94 | 93 | a1i | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
| 95 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 96 | 2 95 | oppradd | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) |
| 97 | 96 | a1i | ⊢ ( 𝑅 ∈ Ring → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
| 98 | 89 90 92 94 97 | gsumpropd | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
| 99 | 98 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
| 100 | 99 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
| 101 | 53 87 100 | 3eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) = ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) |
| 102 | 101 | mpteq2dva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) ) |
| 103 | 1 6 33 4 17 18 24 | psrmulfval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 · 𝐹 ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐺 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑏 ∘f − 𝑒 ) ) ) ) ) ) ) |
| 104 | eqid | ⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) | |
| 105 | 93 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
| 106 | 105 | psrbaspropd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| 107 | 1 | fveq2i | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 108 | 6 107 | eqtri | ⊢ 𝐵 = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 109 | 3 | fveq2i | ⊢ ( Base ‘ 𝑍 ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) |
| 110 | 106 108 109 | 3eqtr4g | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑍 ) ) |
| 111 | 24 110 | eleqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ ( Base ‘ 𝑍 ) ) |
| 112 | 18 110 | eleqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ ( Base ‘ 𝑍 ) ) |
| 113 | 3 104 82 5 17 111 112 | psrmulfval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( 𝑆 Σg ( 𝑐 ∈ { 𝑑 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) ) |
| 114 | 102 103 113 | 3eqtr4rd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝐺 · 𝐹 ) ) |