This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1opprmul.y | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
| ply1opprmul.s | ⊢ 𝑆 = ( oppr ‘ 𝑅 ) | ||
| ply1opprmul.z | ⊢ 𝑍 = ( Poly1 ‘ 𝑆 ) | ||
| ply1opprmul.t | ⊢ · = ( .r ‘ 𝑌 ) | ||
| ply1opprmul.u | ⊢ ∙ = ( .r ‘ 𝑍 ) | ||
| ply1opprmul.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| Assertion | ply1opprmul | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝐺 · 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1opprmul.y | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1opprmul.s | ⊢ 𝑆 = ( oppr ‘ 𝑅 ) | |
| 3 | ply1opprmul.z | ⊢ 𝑍 = ( Poly1 ‘ 𝑆 ) | |
| 4 | ply1opprmul.t | ⊢ · = ( .r ‘ 𝑌 ) | |
| 5 | ply1opprmul.u | ⊢ ∙ = ( .r ‘ 𝑍 ) | |
| 6 | ply1opprmul.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 7 | id | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) | |
| 8 | 1 6 | ply1bascl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 9 | eqid | ⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) | |
| 10 | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) | |
| 11 | 9 10 | psr1bascl | ⊢ ( 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) → 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 12 | 8 11 | syl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 13 | 1 6 | ply1bascl | ⊢ ( 𝐺 ∈ 𝐵 → 𝐺 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 14 | 9 10 | psr1bascl | ⊢ ( 𝐺 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) → 𝐺 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 15 | 13 14 | syl | ⊢ ( 𝐺 ∈ 𝐵 → 𝐺 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 16 | eqid | ⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) | |
| 17 | eqid | ⊢ ( 1o mPwSer 𝑆 ) = ( 1o mPwSer 𝑆 ) | |
| 18 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 19 | 1 18 4 | ply1mulr | ⊢ · = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
| 20 | 18 16 19 | mplmulr | ⊢ · = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
| 21 | eqid | ⊢ ( 1o mPoly 𝑆 ) = ( 1o mPoly 𝑆 ) | |
| 22 | 3 21 5 | ply1mulr | ⊢ ∙ = ( .r ‘ ( 1o mPoly 𝑆 ) ) |
| 23 | 21 17 22 | mplmulr | ⊢ ∙ = ( .r ‘ ( 1o mPwSer 𝑆 ) ) |
| 24 | eqid | ⊢ ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) | |
| 25 | 16 2 17 20 23 24 | psropprmul | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ∧ 𝐺 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) → ( 𝐹 ∙ 𝐺 ) = ( 𝐺 · 𝐹 ) ) |
| 26 | 7 12 15 25 | syl3an | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝐺 · 𝐹 ) ) |