This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer nncan -shaped laws to vectors of numbers. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caonncan.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| caonncan.a | ⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝑆 ) | ||
| caonncan.b | ⊢ ( 𝜑 → 𝐵 : 𝐼 ⟶ 𝑆 ) | ||
| caonncan.z | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) | ||
| Assertion | caonncan | ⊢ ( 𝜑 → ( 𝐴 ∘f 𝑀 ( 𝐴 ∘f 𝑀 𝐵 ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caonncan.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 2 | caonncan.a | ⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝑆 ) | |
| 3 | caonncan.b | ⊢ ( 𝜑 → 𝐵 : 𝐼 ⟶ 𝑆 ) | |
| 4 | caonncan.z | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) | |
| 5 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑧 ) ∈ 𝑆 ) |
| 6 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐵 ‘ 𝑧 ) ∈ 𝑆 ) |
| 7 | 4 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) |
| 9 | id | ⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → 𝑥 = ( 𝐴 ‘ 𝑧 ) ) | |
| 10 | oveq1 | ⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → ( 𝑥 𝑀 𝑦 ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) | |
| 11 | 9 10 | oveq12d | ⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) ) |
| 12 | 11 | eqeq1d | ⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → ( ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ↔ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) = 𝑦 ) ) |
| 13 | oveq2 | ⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 15 | id | ⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → 𝑦 = ( 𝐵 ‘ 𝑧 ) ) | |
| 16 | 14 15 | eqeq12d | ⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → ( ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) = 𝑦 ↔ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝐵 ‘ 𝑧 ) ) ) |
| 17 | 12 16 | rspc2va | ⊢ ( ( ( ( 𝐴 ‘ 𝑧 ) ∈ 𝑆 ∧ ( 𝐵 ‘ 𝑧 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝐵 ‘ 𝑧 ) ) |
| 18 | 5 6 8 17 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝐵 ‘ 𝑧 ) ) |
| 19 | 18 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝐵 ‘ 𝑧 ) ) ) |
| 20 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑧 ) ∈ V ) | |
| 21 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ∈ V ) | |
| 22 | 2 | feqmptd | ⊢ ( 𝜑 → 𝐴 = ( 𝑧 ∈ 𝐼 ↦ ( 𝐴 ‘ 𝑧 ) ) ) |
| 23 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐵 ‘ 𝑧 ) ∈ V ) | |
| 24 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐵 = ( 𝑧 ∈ 𝐼 ↦ ( 𝐵 ‘ 𝑧 ) ) ) |
| 25 | 1 20 23 22 24 | offval2 | ⊢ ( 𝜑 → ( 𝐴 ∘f 𝑀 𝐵 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 26 | 1 20 21 22 25 | offval2 | ⊢ ( 𝜑 → ( 𝐴 ∘f 𝑀 ( 𝐴 ∘f 𝑀 𝐵 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) ) |
| 27 | 19 26 24 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐴 ∘f 𝑀 ( 𝐴 ∘f 𝑀 𝐵 ) ) = 𝐵 ) |