This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for power series base set. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbaspropd.e | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) | |
| Assertion | psrbaspropd | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbaspropd.e | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) | |
| 2 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | eqid | ⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } | |
| 5 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → 𝐼 ∈ V ) | |
| 7 | 2 3 4 5 6 | psrbas | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ) |
| 8 | eqid | ⊢ ( 𝐼 mPwSer 𝑆 ) = ( 𝐼 mPwSer 𝑆 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 10 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) | |
| 11 | 8 9 4 10 6 | psrbas | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ( Base ‘ 𝑆 ) ↑m { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ) |
| 12 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( ( Base ‘ 𝑅 ) ↑m { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) = ( ( Base ‘ 𝑆 ) ↑m { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ) |
| 14 | 11 13 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ( Base ‘ 𝑅 ) ↑m { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ) ) |
| 15 | 7 14 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| 16 | reldmpsr | ⊢ Rel dom mPwSer | |
| 17 | 16 | ovprc1 | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
| 18 | 16 | ovprc1 | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝑆 ) = ∅ ) |
| 19 | 17 18 | eqtr4d | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑆 ) ) |
| 20 | 19 | fveq2d | ⊢ ( ¬ 𝐼 ∈ V → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝐼 ∈ V ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| 22 | 15 21 | pm2.61dan | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |