This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | ||
| Assertion | pmtrfmvdn0 | ⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | |
| 3 | 2on0 | ⊢ 2o ≠ ∅ | |
| 4 | eqid | ⊢ dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) | |
| 5 | 1 2 4 | pmtrfrn | ⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ) |
| 6 | 5 | simpld | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
| 7 | 6 | simp3d | ⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≈ 2o ) |
| 8 | enen1 | ⊢ ( dom ( 𝐹 ∖ I ) ≈ 2o → ( dom ( 𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅ ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐹 ∈ 𝑅 → ( dom ( 𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅ ) ) |
| 10 | en0 | ⊢ ( dom ( 𝐹 ∖ I ) ≈ ∅ ↔ dom ( 𝐹 ∖ I ) = ∅ ) | |
| 11 | en0 | ⊢ ( 2o ≈ ∅ ↔ 2o = ∅ ) | |
| 12 | 9 10 11 | 3bitr3g | ⊢ ( 𝐹 ∈ 𝑅 → ( dom ( 𝐹 ∖ I ) = ∅ ↔ 2o = ∅ ) ) |
| 13 | 12 | necon3bid | ⊢ ( 𝐹 ∈ 𝑅 → ( dom ( 𝐹 ∖ I ) ≠ ∅ ↔ 2o ≠ ∅ ) ) |
| 14 | 3 13 | mpbiri | ⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≠ ∅ ) |