This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnsn.0 | ⊢ 𝐷 = { 𝐴 } | |
| psgnsn.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | ||
| psgnsn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| psgnsn.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgnsn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnsn.0 | ⊢ 𝐷 = { 𝐴 } | |
| 2 | psgnsn.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 3 | psgnsn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | psgnsn.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | 5 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
| 7 | 2 3 1 | symg1bas | ⊢ ( 𝐴 ∈ 𝑉 → 𝐵 = { { 〈 𝐴 , 𝐴 〉 } } ) |
| 8 | 7 | eleq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ { { 〈 𝐴 , 𝐴 〉 } } ) ) |
| 9 | 8 | biimpa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ { { 〈 𝐴 , 𝐴 〉 } } ) |
| 10 | elsni | ⊢ ( 𝑋 ∈ { { 〈 𝐴 , 𝐴 〉 } } → 𝑋 = { 〈 𝐴 , 𝐴 〉 } ) | |
| 11 | 1 | reseq2i | ⊢ ( I ↾ 𝐷 ) = ( I ↾ { 𝐴 } ) |
| 12 | snex | ⊢ { 𝐴 } ∈ V | |
| 13 | 12 | snid | ⊢ { 𝐴 } ∈ { { 𝐴 } } |
| 14 | 1 13 | eqeltri | ⊢ 𝐷 ∈ { { 𝐴 } } |
| 15 | 2 | symgid | ⊢ ( 𝐷 ∈ { { 𝐴 } } → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 16 | 14 15 | mp1i | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐷 ) = ( 0g ‘ 𝐺 ) ) |
| 17 | restidsing | ⊢ ( I ↾ { 𝐴 } ) = ( { 𝐴 } × { 𝐴 } ) | |
| 18 | xpsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( { 𝐴 } × { 𝐴 } ) = { 〈 𝐴 , 𝐴 〉 } ) | |
| 19 | 18 | anidms | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } × { 𝐴 } ) = { 〈 𝐴 , 𝐴 〉 } ) |
| 20 | 17 19 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ { 𝐴 } ) = { 〈 𝐴 , 𝐴 〉 } ) |
| 21 | 11 16 20 | 3eqtr3a | ⊢ ( 𝐴 ∈ 𝑉 → ( 0g ‘ 𝐺 ) = { 〈 𝐴 , 𝐴 〉 } ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = { 〈 𝐴 , 𝐴 〉 } ) |
| 23 | id | ⊢ ( { 〈 𝐴 , 𝐴 〉 } = 𝑋 → { 〈 𝐴 , 𝐴 〉 } = 𝑋 ) | |
| 24 | 23 | eqcoms | ⊢ ( 𝑋 = { 〈 𝐴 , 𝐴 〉 } → { 〈 𝐴 , 𝐴 〉 } = 𝑋 ) |
| 25 | 22 24 | sylan9eqr | ⊢ ( ( 𝑋 = { 〈 𝐴 , 𝐴 〉 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) ) → ( 0g ‘ 𝐺 ) = 𝑋 ) |
| 26 | 25 | ex | ⊢ ( 𝑋 = { 〈 𝐴 , 𝐴 〉 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = 𝑋 ) ) |
| 27 | 10 26 | syl | ⊢ ( 𝑋 ∈ { { 〈 𝐴 , 𝐴 〉 } } → ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = 𝑋 ) ) |
| 28 | 9 27 | mpcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = 𝑋 ) |
| 29 | 6 28 | eqtr2id | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( 𝐺 Σg ∅ ) ) |
| 30 | 29 | fveq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) ) |
| 31 | 1 12 | eqeltri | ⊢ 𝐷 ∈ V |
| 32 | wrd0 | ⊢ ∅ ∈ Word ∅ | |
| 33 | 31 32 | pm3.2i | ⊢ ( 𝐷 ∈ V ∧ ∅ ∈ Word ∅ ) |
| 34 | 1 | fveq2i | ⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ { 𝐴 } ) |
| 35 | pmtrsn | ⊢ ( pmTrsp ‘ { 𝐴 } ) = ∅ | |
| 36 | 34 35 | eqtri | ⊢ ( pmTrsp ‘ 𝐷 ) = ∅ |
| 37 | 36 | rneqi | ⊢ ran ( pmTrsp ‘ 𝐷 ) = ran ∅ |
| 38 | rn0 | ⊢ ran ∅ = ∅ | |
| 39 | 37 38 | eqtr2i | ⊢ ∅ = ran ( pmTrsp ‘ 𝐷 ) |
| 40 | 2 39 4 | psgnvalii | ⊢ ( ( 𝐷 ∈ V ∧ ∅ ∈ Word ∅ ) → ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) = ( - 1 ↑ ( ♯ ‘ ∅ ) ) ) |
| 41 | 33 40 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝐺 Σg ∅ ) ) = ( - 1 ↑ ( ♯ ‘ ∅ ) ) ) |
| 42 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 43 | 42 | oveq2i | ⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) ) = ( - 1 ↑ 0 ) |
| 44 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 45 | exp0 | ⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) | |
| 46 | 44 45 | ax-mp | ⊢ ( - 1 ↑ 0 ) = 1 |
| 47 | 43 46 | eqtri | ⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) ) = 1 |
| 48 | 47 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( - 1 ↑ ( ♯ ‘ ∅ ) ) = 1 ) |
| 49 | 30 41 48 | 3eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = 1 ) |