This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnsn.0 | |- D = { A } |
|
| psgnsn.g | |- G = ( SymGrp ` D ) |
||
| psgnsn.b | |- B = ( Base ` G ) |
||
| psgnsn.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnsn | |- ( ( A e. V /\ X e. B ) -> ( N ` X ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnsn.0 | |- D = { A } |
|
| 2 | psgnsn.g | |- G = ( SymGrp ` D ) |
|
| 3 | psgnsn.b | |- B = ( Base ` G ) |
|
| 4 | psgnsn.n | |- N = ( pmSgn ` D ) |
|
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | 5 | gsum0 | |- ( G gsum (/) ) = ( 0g ` G ) |
| 7 | 2 3 1 | symg1bas | |- ( A e. V -> B = { { <. A , A >. } } ) |
| 8 | 7 | eleq2d | |- ( A e. V -> ( X e. B <-> X e. { { <. A , A >. } } ) ) |
| 9 | 8 | biimpa | |- ( ( A e. V /\ X e. B ) -> X e. { { <. A , A >. } } ) |
| 10 | elsni | |- ( X e. { { <. A , A >. } } -> X = { <. A , A >. } ) |
|
| 11 | 1 | reseq2i | |- ( _I |` D ) = ( _I |` { A } ) |
| 12 | snex | |- { A } e. _V |
|
| 13 | 12 | snid | |- { A } e. { { A } } |
| 14 | 1 13 | eqeltri | |- D e. { { A } } |
| 15 | 2 | symgid | |- ( D e. { { A } } -> ( _I |` D ) = ( 0g ` G ) ) |
| 16 | 14 15 | mp1i | |- ( A e. V -> ( _I |` D ) = ( 0g ` G ) ) |
| 17 | restidsing | |- ( _I |` { A } ) = ( { A } X. { A } ) |
|
| 18 | xpsng | |- ( ( A e. V /\ A e. V ) -> ( { A } X. { A } ) = { <. A , A >. } ) |
|
| 19 | 18 | anidms | |- ( A e. V -> ( { A } X. { A } ) = { <. A , A >. } ) |
| 20 | 17 19 | eqtrid | |- ( A e. V -> ( _I |` { A } ) = { <. A , A >. } ) |
| 21 | 11 16 20 | 3eqtr3a | |- ( A e. V -> ( 0g ` G ) = { <. A , A >. } ) |
| 22 | 21 | adantr | |- ( ( A e. V /\ X e. B ) -> ( 0g ` G ) = { <. A , A >. } ) |
| 23 | id | |- ( { <. A , A >. } = X -> { <. A , A >. } = X ) |
|
| 24 | 23 | eqcoms | |- ( X = { <. A , A >. } -> { <. A , A >. } = X ) |
| 25 | 22 24 | sylan9eqr | |- ( ( X = { <. A , A >. } /\ ( A e. V /\ X e. B ) ) -> ( 0g ` G ) = X ) |
| 26 | 25 | ex | |- ( X = { <. A , A >. } -> ( ( A e. V /\ X e. B ) -> ( 0g ` G ) = X ) ) |
| 27 | 10 26 | syl | |- ( X e. { { <. A , A >. } } -> ( ( A e. V /\ X e. B ) -> ( 0g ` G ) = X ) ) |
| 28 | 9 27 | mpcom | |- ( ( A e. V /\ X e. B ) -> ( 0g ` G ) = X ) |
| 29 | 6 28 | eqtr2id | |- ( ( A e. V /\ X e. B ) -> X = ( G gsum (/) ) ) |
| 30 | 29 | fveq2d | |- ( ( A e. V /\ X e. B ) -> ( N ` X ) = ( N ` ( G gsum (/) ) ) ) |
| 31 | 1 12 | eqeltri | |- D e. _V |
| 32 | wrd0 | |- (/) e. Word (/) |
|
| 33 | 31 32 | pm3.2i | |- ( D e. _V /\ (/) e. Word (/) ) |
| 34 | 1 | fveq2i | |- ( pmTrsp ` D ) = ( pmTrsp ` { A } ) |
| 35 | pmtrsn | |- ( pmTrsp ` { A } ) = (/) |
|
| 36 | 34 35 | eqtri | |- ( pmTrsp ` D ) = (/) |
| 37 | 36 | rneqi | |- ran ( pmTrsp ` D ) = ran (/) |
| 38 | rn0 | |- ran (/) = (/) |
|
| 39 | 37 38 | eqtr2i | |- (/) = ran ( pmTrsp ` D ) |
| 40 | 2 39 4 | psgnvalii | |- ( ( D e. _V /\ (/) e. Word (/) ) -> ( N ` ( G gsum (/) ) ) = ( -u 1 ^ ( # ` (/) ) ) ) |
| 41 | 33 40 | mp1i | |- ( ( A e. V /\ X e. B ) -> ( N ` ( G gsum (/) ) ) = ( -u 1 ^ ( # ` (/) ) ) ) |
| 42 | hash0 | |- ( # ` (/) ) = 0 |
|
| 43 | 42 | oveq2i | |- ( -u 1 ^ ( # ` (/) ) ) = ( -u 1 ^ 0 ) |
| 44 | neg1cn | |- -u 1 e. CC |
|
| 45 | exp0 | |- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
|
| 46 | 44 45 | ax-mp | |- ( -u 1 ^ 0 ) = 1 |
| 47 | 43 46 | eqtri | |- ( -u 1 ^ ( # ` (/) ) ) = 1 |
| 48 | 47 | a1i | |- ( ( A e. V /\ X e. B ) -> ( -u 1 ^ ( # ` (/) ) ) = 1 ) |
| 49 | 30 41 48 | 3eqtrd | |- ( ( A e. V /\ X e. B ) -> ( N ` X ) = 1 ) |