This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for A e/ _V , i.e. for the empty set { A } = (/) resulting in ( pmTrsp(/) ) = (/) . (Contributed by AV, 6-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmtrsn | ⊢ ( pmTrsp ‘ { 𝐴 } ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex | ⊢ { 𝐴 } ∈ V | |
| 2 | eqid | ⊢ ( pmTrsp ‘ { 𝐴 } ) = ( pmTrsp ‘ { 𝐴 } ) | |
| 3 | 2 | pmtrfval | ⊢ ( { 𝐴 } ∈ V → ( pmTrsp ‘ { 𝐴 } ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 4 | 1 3 | ax-mp | ⊢ ( pmTrsp ‘ { 𝐴 } ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 5 | eqid | ⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) | |
| 6 | 5 | dmmpt | ⊢ dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = { 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V } |
| 7 | 2on0 | ⊢ 2o ≠ ∅ | |
| 8 | ensymb | ⊢ ( ∅ ≈ 2o ↔ 2o ≈ ∅ ) | |
| 9 | en0 | ⊢ ( 2o ≈ ∅ ↔ 2o = ∅ ) | |
| 10 | 8 9 | bitri | ⊢ ( ∅ ≈ 2o ↔ 2o = ∅ ) |
| 11 | 7 10 | nemtbir | ⊢ ¬ ∅ ≈ 2o |
| 12 | snnen2o | ⊢ ¬ { 𝐴 } ≈ 2o | |
| 13 | 0ex | ⊢ ∅ ∈ V | |
| 14 | breq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ≈ 2o ↔ ∅ ≈ 2o ) ) | |
| 15 | 14 | notbid | ⊢ ( 𝑦 = ∅ → ( ¬ 𝑦 ≈ 2o ↔ ¬ ∅ ≈ 2o ) ) |
| 16 | breq1 | ⊢ ( 𝑦 = { 𝐴 } → ( 𝑦 ≈ 2o ↔ { 𝐴 } ≈ 2o ) ) | |
| 17 | 16 | notbid | ⊢ ( 𝑦 = { 𝐴 } → ( ¬ 𝑦 ≈ 2o ↔ ¬ { 𝐴 } ≈ 2o ) ) |
| 18 | 13 1 15 17 | ralpr | ⊢ ( ∀ 𝑦 ∈ { ∅ , { 𝐴 } } ¬ 𝑦 ≈ 2o ↔ ( ¬ ∅ ≈ 2o ∧ ¬ { 𝐴 } ≈ 2o ) ) |
| 19 | 11 12 18 | mpbir2an | ⊢ ∀ 𝑦 ∈ { ∅ , { 𝐴 } } ¬ 𝑦 ≈ 2o |
| 20 | pwsn | ⊢ 𝒫 { 𝐴 } = { ∅ , { 𝐴 } } | |
| 21 | 20 | raleqi | ⊢ ( ∀ 𝑦 ∈ 𝒫 { 𝐴 } ¬ 𝑦 ≈ 2o ↔ ∀ 𝑦 ∈ { ∅ , { 𝐴 } } ¬ 𝑦 ≈ 2o ) |
| 22 | 19 21 | mpbir | ⊢ ∀ 𝑦 ∈ 𝒫 { 𝐴 } ¬ 𝑦 ≈ 2o |
| 23 | rabeq0 | ⊢ ( { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } = ∅ ↔ ∀ 𝑦 ∈ 𝒫 { 𝐴 } ¬ 𝑦 ≈ 2o ) | |
| 24 | 22 23 | mpbir | ⊢ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } = ∅ |
| 25 | 24 | rabeqi | ⊢ { 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V } = { 𝑝 ∈ ∅ ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V } |
| 26 | rab0 | ⊢ { 𝑝 ∈ ∅ ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V } = ∅ | |
| 27 | 6 25 26 | 3eqtri | ⊢ dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ |
| 28 | mptrel | ⊢ Rel ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) | |
| 29 | reldm0 | ⊢ ( Rel ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ↔ dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ) ) | |
| 30 | 28 29 | ax-mp | ⊢ ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ↔ dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ) |
| 31 | 27 30 | mpbir | ⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ |
| 32 | 4 31 | eqtri | ⊢ ( pmTrsp ‘ { 𝐴 } ) = ∅ |