This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a singleton is the symmetric group S_1 consisting of the identity only. (Contributed by AV, 9-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symg1bas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symg1bas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| symg1bas.0 | ⊢ 𝐴 = { 𝐼 } | ||
| Assertion | symg1bas | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { { 〈 𝐼 , 𝐼 〉 } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symg1bas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symg1bas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | symg1bas.0 | ⊢ 𝐴 = { 𝐼 } | |
| 4 | 1 2 | symgbas | ⊢ 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } |
| 5 | eqidd | ⊢ ( 𝐴 = { 𝐼 } → 𝑝 = 𝑝 ) | |
| 6 | id | ⊢ ( 𝐴 = { 𝐼 } → 𝐴 = { 𝐼 } ) | |
| 7 | 5 6 6 | f1oeq123d | ⊢ ( 𝐴 = { 𝐼 } → ( 𝑝 : 𝐴 –1-1-onto→ 𝐴 ↔ 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } ) ) |
| 8 | 3 7 | ax-mp | ⊢ ( 𝑝 : 𝐴 –1-1-onto→ 𝐴 ↔ 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } ) |
| 9 | f1of | ⊢ ( 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } → 𝑝 : { 𝐼 } ⟶ { 𝐼 } ) | |
| 10 | fsng | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉 ) → ( 𝑝 : { 𝐼 } ⟶ { 𝐼 } ↔ 𝑝 = { 〈 𝐼 , 𝐼 〉 } ) ) | |
| 11 | 10 | anidms | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑝 : { 𝐼 } ⟶ { 𝐼 } ↔ 𝑝 = { 〈 𝐼 , 𝐼 〉 } ) ) |
| 12 | 9 11 | imbitrid | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } → 𝑝 = { 〈 𝐼 , 𝐼 〉 } ) ) |
| 13 | f1osng | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉 ) → { 〈 𝐼 , 𝐼 〉 } : { 𝐼 } –1-1-onto→ { 𝐼 } ) | |
| 14 | 13 | anidms | ⊢ ( 𝐼 ∈ 𝑉 → { 〈 𝐼 , 𝐼 〉 } : { 𝐼 } –1-1-onto→ { 𝐼 } ) |
| 15 | f1oeq1 | ⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } ↔ { 〈 𝐼 , 𝐼 〉 } : { 𝐼 } –1-1-onto→ { 𝐼 } ) ) | |
| 16 | 14 15 | syl5ibrcom | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } ) ) |
| 17 | 12 16 | impbid | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } ↔ 𝑝 = { 〈 𝐼 , 𝐼 〉 } ) ) |
| 18 | 8 17 | bitrid | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑝 : 𝐴 –1-1-onto→ 𝐴 ↔ 𝑝 = { 〈 𝐼 , 𝐼 〉 } ) ) |
| 19 | vex | ⊢ 𝑝 ∈ V | |
| 20 | f1oeq1 | ⊢ ( 𝑓 = 𝑝 → ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 ↔ 𝑝 : 𝐴 –1-1-onto→ 𝐴 ) ) | |
| 21 | 19 20 | elab | ⊢ ( 𝑝 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ↔ 𝑝 : 𝐴 –1-1-onto→ 𝐴 ) |
| 22 | velsn | ⊢ ( 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↔ 𝑝 = { 〈 𝐼 , 𝐼 〉 } ) | |
| 23 | 18 21 22 | 3bitr4g | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑝 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ↔ 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ) ) |
| 24 | 23 | eqrdv | ⊢ ( 𝐼 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } = { { 〈 𝐼 , 𝐼 〉 } } ) |
| 25 | 4 24 | eqtrid | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { { 〈 𝐼 , 𝐼 〉 } } ) |