This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009) (Proof shortened by JJ, 25-Aug-2021) (Proof shortened by Peter Mazsa, 6-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restidsing | ⊢ ( I ↾ { 𝐴 } ) = ( { 𝐴 } × { 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( I ↾ { 𝐴 } ) | |
| 2 | relxp | ⊢ Rel ( { 𝐴 } × { 𝐴 } ) | |
| 3 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
| 4 | velsn | ⊢ ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 ) | |
| 5 | 3 4 | anbi12i | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | 6 | ideq | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 8 | 3 7 | anbi12i | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 I 𝑦 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑥 = 𝑦 ) ) |
| 9 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) | |
| 10 | eqcom | ⊢ ( 𝐴 = 𝑦 ↔ 𝑦 = 𝐴 ) | |
| 11 | 9 10 | bitrdi | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑦 = 𝐴 ) ) |
| 12 | 11 | pm5.32i | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 = 𝑦 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) |
| 13 | 8 12 | bitri | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 I 𝑦 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) |
| 14 | df-br | ⊢ ( 𝑥 I 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ I ) | |
| 15 | 14 | anbi2i | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 I 𝑦 ) ↔ ( 𝑥 ∈ { 𝐴 } ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ) |
| 16 | 5 13 15 | 3bitr2ri | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) ) |
| 17 | 6 | opelresi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ { 𝐴 } ) ↔ ( 𝑥 ∈ { 𝐴 } ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ) |
| 18 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝐴 } × { 𝐴 } ) ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ) ) | |
| 19 | 16 17 18 | 3bitr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ { 𝐴 } ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝐴 } × { 𝐴 } ) ) |
| 20 | 1 2 19 | eqrelriiv | ⊢ ( I ↾ { 𝐴 } ) = ( { 𝐴 } × { 𝐴 } ) |