This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product of rings is a ring. (Contributed by Mario Carneiro, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsringd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsringd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsringd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsringd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Ring ) | ||
| Assertion | prdsringd | ⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsringd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsringd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdsringd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsringd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Ring ) | |
| 5 | ringgrp | ⊢ ( 𝑥 ∈ Ring → 𝑥 ∈ Grp ) | |
| 6 | 5 | ssriv | ⊢ Ring ⊆ Grp |
| 7 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Ring ∧ Ring ⊆ Grp ) → 𝑅 : 𝐼 ⟶ Grp ) | |
| 8 | 4 6 7 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
| 9 | 1 2 3 8 | prdsgrpd | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 10 | eqid | ⊢ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) = ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) | |
| 11 | mgpf | ⊢ ( mulGrp ↾ Ring ) : Ring ⟶ Mnd | |
| 12 | fco2 | ⊢ ( ( ( mulGrp ↾ Ring ) : Ring ⟶ Mnd ∧ 𝑅 : 𝐼 ⟶ Ring ) → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Mnd ) | |
| 13 | 11 4 12 | sylancr | ⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Mnd ) |
| 14 | 10 2 3 13 | prdsmndd | ⊢ ( 𝜑 → ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ Mnd ) |
| 15 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | |
| 16 | eqid | ⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) | |
| 17 | 4 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 18 | 1 16 10 2 3 17 | prdsmgp | ⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) ) |
| 19 | 18 | simpld | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
| 20 | 18 | simprd | ⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
| 21 | 20 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) 𝑦 ) ) |
| 22 | 15 19 21 | mndpropd | ⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑌 ) ∈ Mnd ↔ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ Mnd ) ) |
| 23 | 14 22 | mpbird | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
| 24 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Ring ) |
| 25 | 24 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑤 ) ∈ Ring ) |
| 26 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 27 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ 𝑉 ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
| 29 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ 𝑊 ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 31 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 33 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑥 ∈ ( Base ‘ 𝑌 ) ) | |
| 34 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑤 ∈ 𝐼 ) | |
| 35 | 1 26 28 30 32 33 34 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 36 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑌 ) ) | |
| 37 | 36 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑦 ∈ ( Base ‘ 𝑌 ) ) |
| 38 | 1 26 28 30 32 37 34 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 39 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑌 ) ) | |
| 40 | 39 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑧 ∈ ( Base ‘ 𝑌 ) ) |
| 41 | 1 26 28 30 32 40 34 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 42 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) | |
| 43 | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) | |
| 44 | eqid | ⊢ ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) = ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) | |
| 45 | 42 43 44 | ringdi | ⊢ ( ( ( 𝑅 ‘ 𝑤 ) ∈ Ring ∧ ( ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 46 | 25 35 38 41 45 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 47 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 48 | 1 26 28 30 32 37 40 47 34 | prdsplusgfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 49 | 48 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 50 | eqid | ⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) | |
| 51 | 1 26 28 30 32 33 37 50 34 | prdsmulrfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ) |
| 52 | 1 26 28 30 32 33 40 50 34 | prdsmulrfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 53 | 51 52 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 54 | 46 49 53 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) |
| 55 | 54 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑤 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 56 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑌 ) ) | |
| 57 | ringmnd | ⊢ ( 𝑥 ∈ Ring → 𝑥 ∈ Mnd ) | |
| 58 | 57 | ssriv | ⊢ Ring ⊆ Mnd |
| 59 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Ring ∧ Ring ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 60 | 4 58 59 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 61 | 60 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 62 | 1 26 47 27 29 61 36 39 | prdsplusgcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
| 63 | 1 26 27 29 31 56 62 50 | prdsmulrval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 64 | 1 26 50 27 29 24 56 36 | prdsmulrcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ∈ ( Base ‘ 𝑌 ) ) |
| 65 | 1 26 50 27 29 24 56 39 | prdsmulrcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
| 66 | 1 26 27 29 31 64 65 47 | prdsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 67 | 55 63 66 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ) |
| 68 | 42 43 44 | ringdir | ⊢ ( ( ( 𝑅 ‘ 𝑤 ) ∈ Ring ∧ ( ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) ) → ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 69 | 25 35 38 41 68 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 70 | 1 26 28 30 32 33 37 47 34 | prdsplusgfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ) |
| 71 | 70 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 72 | 1 26 28 30 32 37 40 50 34 | prdsmulrfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 73 | 52 72 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 74 | 69 71 73 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) |
| 75 | 74 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 76 | 1 26 47 27 29 61 56 36 | prdsplusgcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ ( Base ‘ 𝑌 ) ) |
| 77 | 1 26 27 29 31 76 39 50 | prdsmulrval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 78 | 1 26 50 27 29 24 36 39 | prdsmulrcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
| 79 | 1 26 27 29 31 65 78 47 | prdsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 80 | 75 77 79 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) |
| 81 | 67 80 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) |
| 82 | 81 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ∀ 𝑧 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) |
| 83 | 26 16 47 50 | isring | ⊢ ( 𝑌 ∈ Ring ↔ ( 𝑌 ∈ Grp ∧ ( mulGrp ‘ 𝑌 ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ∀ 𝑧 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) ) |
| 84 | 9 23 82 83 | syl3anbrc | ⊢ ( 𝜑 → 𝑌 ∈ Ring ) |