This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsbasmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbasmpt.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsbasmpt.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | ||
| prdsplusgval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| prdsplusgval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| prdsmulrval.t | ⊢ · = ( .r ‘ 𝑌 ) | ||
| prdsmulrfval.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | ||
| Assertion | prdsmulrfval | ⊢ ( 𝜑 → ( ( 𝐹 · 𝐺 ) ‘ 𝐽 ) = ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsbasmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsbasmpt.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | prdsbasmpt.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | |
| 6 | prdsplusgval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 7 | prdsplusgval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 8 | prdsmulrval.t | ⊢ · = ( .r ‘ 𝑌 ) | |
| 9 | prdsmulrfval.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | |
| 10 | 1 2 3 4 5 6 7 8 | prdsmulrval | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 11 | 10 | fveq1d | ⊢ ( 𝜑 → ( ( 𝐹 · 𝐺 ) ‘ 𝐽 ) = ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐽 ) ) |
| 12 | 2fveq3 | ⊢ ( 𝑥 = 𝐽 → ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) = ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ) | |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝐽 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐽 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝐽 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝐽 ) ) | |
| 15 | 12 13 14 | oveq123d | ⊢ ( 𝑥 = 𝐽 → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |
| 16 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) | |
| 17 | ovex | ⊢ ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ∈ V | |
| 18 | 15 16 17 | fvmpt | ⊢ ( 𝐽 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐽 ) = ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |
| 19 | 9 18 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝐽 ) = ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |
| 20 | 11 19 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐹 · 𝐺 ) ‘ 𝐽 ) = ( ( 𝐹 ‘ 𝐽 ) ( .r ‘ ( 𝑅 ‘ 𝐽 ) ) ( 𝐺 ‘ 𝐽 ) ) ) |