This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a (unital) ring". Definition of "ring with unit" in Schechter p. 187. (Contributed by NM, 18-Oct-2012) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isring.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| isring.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| isring.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | isring | ⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isring.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 3 | isring.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | isring.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = 𝐺 ) |
| 7 | 6 | eleq1d | ⊢ ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ∈ Mnd ↔ 𝐺 ∈ Mnd ) ) |
| 8 | fvexd | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) ∈ V ) | |
| 9 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 10 | 9 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 11 | fvexd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑟 ) ∈ V ) | |
| 12 | simpl | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → 𝑟 = 𝑅 ) | |
| 13 | 12 | fveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) |
| 14 | 13 3 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑟 ) = + ) |
| 15 | fvexd | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( .r ‘ 𝑟 ) ∈ V ) | |
| 16 | simpll | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) → 𝑟 = 𝑅 ) | |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
| 18 | 17 4 | eqtr4di | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( .r ‘ 𝑟 ) = · ) |
| 19 | simpllr | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑏 = 𝐵 ) | |
| 20 | simpr | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑡 = · ) | |
| 21 | eqidd | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑥 = 𝑥 ) | |
| 22 | simplr | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑝 = + ) | |
| 23 | 22 | oveqd | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑦 𝑝 𝑧 ) = ( 𝑦 + 𝑧 ) ) |
| 24 | 20 21 23 | oveq123d | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) |
| 25 | 20 | oveqd | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑡 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 26 | 20 | oveqd | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑡 𝑧 ) = ( 𝑥 · 𝑧 ) ) |
| 27 | 22 25 26 | oveq123d | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 28 | 24 27 | eqeq12d | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ↔ ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 29 | 22 | oveqd | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑥 𝑝 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 30 | eqidd | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑧 = 𝑧 ) | |
| 31 | 20 29 30 | oveq123d | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) |
| 32 | 20 | oveqd | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( 𝑦 𝑡 𝑧 ) = ( 𝑦 · 𝑧 ) ) |
| 33 | 22 26 32 | oveq123d | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 34 | 31 33 | eqeq12d | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ↔ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 35 | 28 34 | anbi12d | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| 36 | 19 35 | raleqbidv | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| 37 | 19 36 | raleqbidv | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| 38 | 19 37 | raleqbidv | ⊢ ( ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| 39 | 15 18 38 | sbcied2 | ⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑝 = + ) → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| 40 | 11 14 39 | sbcied2 | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| 41 | 8 10 40 | sbcied2 | ⊢ ( 𝑟 = 𝑅 → ( [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| 42 | 7 41 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( mulGrp ‘ 𝑟 ) ∈ Mnd ∧ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) ) |
| 43 | df-ring | ⊢ Ring = { 𝑟 ∈ Grp ∣ ( ( mulGrp ‘ 𝑟 ) ∈ Mnd ∧ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) } | |
| 44 | 42 43 | elrab2 | ⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) ) |
| 45 | 3anass | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ↔ ( 𝑅 ∈ Grp ∧ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) ) | |
| 46 | 44 45 | bitr4i | ⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |