This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015) (Proof shortened by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsmulrcl.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsmulrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsmulrcl.t | ⊢ · = ( .r ‘ 𝑌 ) | ||
| prdsmulrcl.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsmulrcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsmulrcl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Ring ) | ||
| prdsmulrcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| prdsmulrcl.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| Assertion | prdsmulrcl | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsmulrcl.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsmulrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsmulrcl.t | ⊢ · = ( .r ‘ 𝑌 ) | |
| 4 | prdsmulrcl.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 5 | prdsmulrcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | prdsmulrcl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Ring ) | |
| 7 | prdsmulrcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 8 | prdsmulrcl.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 9 | ringssrng | ⊢ Ring ⊆ Rng | |
| 10 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Ring ∧ Ring ⊆ Rng ) → 𝑅 : 𝐼 ⟶ Rng ) | |
| 11 | 6 9 10 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Rng ) |
| 12 | 1 2 3 4 5 11 7 8 | prdsmulrngcl | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |