This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsmgp.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsmgp.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) | ||
| prdsmgp.z | ⊢ 𝑍 = ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) | ||
| prdsmgp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| prdsmgp.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| prdsmgp.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | ||
| Assertion | prdsmgp | ⊢ ( 𝜑 → ( ( Base ‘ 𝑀 ) = ( Base ‘ 𝑍 ) ∧ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsmgp.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsmgp.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) | |
| 3 | prdsmgp.z | ⊢ 𝑍 = ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) | |
| 4 | prdsmgp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 5 | prdsmgp.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 6 | prdsmgp.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | |
| 7 | eqid | ⊢ ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 8 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 9 | 7 8 | mgpbas | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 10 | fvco2 | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑥 ∈ 𝐼 ) → ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) ) | |
| 11 | 6 10 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 12 | 11 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) = ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) ) |
| 13 | 12 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 14 | 9 13 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 15 | 14 | ixpeq2dva | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 16 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 17 | 2 16 | mgpbas | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑀 ) |
| 18 | 17 | eqcomi | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑌 ) |
| 19 | 1 18 5 4 6 | prdsbas2 | ⊢ ( 𝜑 → ( Base ‘ 𝑀 ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) | |
| 21 | fnmgp | ⊢ mulGrp Fn V | |
| 22 | ssv | ⊢ ran 𝑅 ⊆ V | |
| 23 | 22 | a1i | ⊢ ( 𝜑 → ran 𝑅 ⊆ V ) |
| 24 | fnco | ⊢ ( ( mulGrp Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V ) → ( mulGrp ∘ 𝑅 ) Fn 𝐼 ) | |
| 25 | 21 6 23 24 | mp3an2i | ⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) Fn 𝐼 ) |
| 26 | 3 20 5 4 25 | prdsbas2 | ⊢ ( 𝜑 → ( Base ‘ 𝑍 ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) ) ) |
| 27 | 15 19 26 | 3eqtr4d | ⊢ ( 𝜑 → ( Base ‘ 𝑀 ) = ( Base ‘ 𝑍 ) ) |
| 28 | eqid | ⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) | |
| 29 | 2 28 | mgpplusg | ⊢ ( .r ‘ 𝑌 ) = ( +g ‘ 𝑀 ) |
| 30 | eqid | ⊢ ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) | |
| 31 | eqid | ⊢ ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) = ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) | |
| 32 | 30 31 | mgpplusg | ⊢ ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) = ( +g ‘ ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) ) |
| 33 | fvco2 | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) ) | |
| 34 | 6 33 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) ) |
| 35 | 34 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) = ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) |
| 36 | 35 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( +g ‘ ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) ) = ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ) |
| 37 | 32 36 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) = ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ) |
| 38 | 37 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) |
| 39 | 38 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) ) |
| 40 | 27 27 39 | mpoeq123dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑀 ) , 𝑦 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑍 ) , 𝑦 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) ) ) |
| 41 | fnex | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → 𝑅 ∈ V ) | |
| 42 | 6 4 41 | syl2anc | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 43 | 6 | fndmd | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 44 | 1 5 42 18 43 28 | prdsmulr | ⊢ ( 𝜑 → ( .r ‘ 𝑌 ) = ( 𝑥 ∈ ( Base ‘ 𝑀 ) , 𝑦 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) ) ) |
| 45 | fnex | ⊢ ( ( ( mulGrp ∘ 𝑅 ) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → ( mulGrp ∘ 𝑅 ) ∈ V ) | |
| 46 | 25 4 45 | syl2anc | ⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) ∈ V ) |
| 47 | 25 | fndmd | ⊢ ( 𝜑 → dom ( mulGrp ∘ 𝑅 ) = 𝐼 ) |
| 48 | eqid | ⊢ ( +g ‘ 𝑍 ) = ( +g ‘ 𝑍 ) | |
| 49 | 3 5 46 20 47 48 | prdsplusg | ⊢ ( 𝜑 → ( +g ‘ 𝑍 ) = ( 𝑥 ∈ ( Base ‘ 𝑍 ) , 𝑦 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) ) ) |
| 50 | 40 44 49 | 3eqtr4d | ⊢ ( 𝜑 → ( .r ‘ 𝑌 ) = ( +g ‘ 𝑍 ) ) |
| 51 | 29 50 | eqtr3id | ⊢ ( 𝜑 → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑍 ) ) |
| 52 | 27 51 | jca | ⊢ ( 𝜑 → ( ( Base ‘ 𝑀 ) = ( Base ‘ 𝑍 ) ∧ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑍 ) ) ) |