This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mgpf | ⊢ ( mulGrp ↾ Ring ) : Ring ⟶ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp | ⊢ mulGrp Fn V | |
| 2 | ssv | ⊢ Ring ⊆ V | |
| 3 | fnssres | ⊢ ( ( mulGrp Fn V ∧ Ring ⊆ V ) → ( mulGrp ↾ Ring ) Fn Ring ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( mulGrp ↾ Ring ) Fn Ring |
| 5 | fvres | ⊢ ( 𝑎 ∈ Ring → ( ( mulGrp ↾ Ring ) ‘ 𝑎 ) = ( mulGrp ‘ 𝑎 ) ) | |
| 6 | eqid | ⊢ ( mulGrp ‘ 𝑎 ) = ( mulGrp ‘ 𝑎 ) | |
| 7 | 6 | ringmgp | ⊢ ( 𝑎 ∈ Ring → ( mulGrp ‘ 𝑎 ) ∈ Mnd ) |
| 8 | 5 7 | eqeltrd | ⊢ ( 𝑎 ∈ Ring → ( ( mulGrp ↾ Ring ) ‘ 𝑎 ) ∈ Mnd ) |
| 9 | 8 | rgen | ⊢ ∀ 𝑎 ∈ Ring ( ( mulGrp ↾ Ring ) ‘ 𝑎 ) ∈ Mnd |
| 10 | ffnfv | ⊢ ( ( mulGrp ↾ Ring ) : Ring ⟶ Mnd ↔ ( ( mulGrp ↾ Ring ) Fn Ring ∧ ∀ 𝑎 ∈ Ring ( ( mulGrp ↾ Ring ) ‘ 𝑎 ) ∈ Mnd ) ) | |
| 11 | 4 9 10 | mpbir2an | ⊢ ( mulGrp ↾ Ring ) : Ring ⟶ Mnd |