This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2other2 | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2eleq | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 = { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ) | |
| 2 | prcom | ⊢ { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } = { ∪ ( 𝑃 ∖ { 𝑋 } ) , 𝑋 } | |
| 3 | 1 2 | eqtrdi | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 = { ∪ ( 𝑃 ∖ { 𝑋 } ) , 𝑋 } ) |
| 4 | 3 | difeq1d | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) = ( { ∪ ( 𝑃 ∖ { 𝑋 } ) , 𝑋 } ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ) |
| 5 | difprsnss | ⊢ ( { ∪ ( 𝑃 ∖ { 𝑋 } ) , 𝑋 } ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ⊆ { 𝑋 } | |
| 6 | 4 5 | eqsstrdi | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ⊆ { 𝑋 } ) |
| 7 | simpl | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ∈ 𝑃 ) | |
| 8 | 1onn | ⊢ 1o ∈ ω | |
| 9 | simpr | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ 2o ) | |
| 10 | df-2o | ⊢ 2o = suc 1o | |
| 11 | 9 10 | breqtrdi | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ suc 1o ) |
| 12 | dif1ennn | ⊢ ( ( 1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ) | |
| 13 | 8 11 7 12 | mp3an2i | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ) |
| 14 | en1uniel | ⊢ ( ( 𝑃 ∖ { 𝑋 } ) ≈ 1o → ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ ( 𝑃 ∖ { 𝑋 } ) ) | |
| 15 | eldifsni | ⊢ ( ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ ( 𝑃 ∖ { 𝑋 } ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) |
| 17 | 16 | necomd | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ≠ ∪ ( 𝑃 ∖ { 𝑋 } ) ) |
| 18 | eldifsn | ⊢ ( 𝑋 ∈ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ↔ ( 𝑋 ∈ 𝑃 ∧ 𝑋 ≠ ∪ ( 𝑃 ∖ { 𝑋 } ) ) ) | |
| 19 | 7 17 18 | sylanbrc | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ∈ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ) |
| 20 | 19 | snssd | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → { 𝑋 } ⊆ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ) |
| 21 | 6 20 | eqssd | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) = { 𝑋 } ) |
| 22 | 21 | unieqd | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) = ∪ { 𝑋 } ) |
| 23 | unisng | ⊢ ( 𝑋 ∈ 𝑃 → ∪ { 𝑋 } = 𝑋 ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ { 𝑋 } = 𝑋 ) |
| 25 | 22 24 | eqtrd | ⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) = 𝑋 ) |