This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition (as a kind of function) is the function transposing the two points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | ||
| pmtrfrn.p | ⊢ 𝑃 = dom ( 𝐹 ∖ I ) | ||
| Assertion | pmtrfrn | ⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | |
| 3 | pmtrfrn.p | ⊢ 𝑃 = dom ( 𝐹 ∖ I ) | |
| 4 | noel | ⊢ ¬ 𝐹 ∈ ∅ | |
| 5 | 1 | rnfvprc | ⊢ ( ¬ 𝐷 ∈ V → ran 𝑇 = ∅ ) |
| 6 | 2 5 | eqtrid | ⊢ ( ¬ 𝐷 ∈ V → 𝑅 = ∅ ) |
| 7 | 6 | eleq2d | ⊢ ( ¬ 𝐷 ∈ V → ( 𝐹 ∈ 𝑅 ↔ 𝐹 ∈ ∅ ) ) |
| 8 | 4 7 | mtbiri | ⊢ ( ¬ 𝐷 ∈ V → ¬ 𝐹 ∈ 𝑅 ) |
| 9 | 8 | con4i | ⊢ ( 𝐹 ∈ 𝑅 → 𝐷 ∈ V ) |
| 10 | mptexg | ⊢ ( 𝐷 ∈ V → ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑤 , ∪ ( 𝑤 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V ) | |
| 11 | 10 | ralrimivw | ⊢ ( 𝐷 ∈ V → ∀ 𝑤 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑤 , ∪ ( 𝑤 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V ) |
| 12 | eqid | ⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑤 , ∪ ( 𝑤 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑤 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑤 , ∪ ( 𝑤 ∖ { 𝑧 } ) , 𝑧 ) ) ) | |
| 13 | 12 | fnmpt | ⊢ ( ∀ 𝑤 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑤 , ∪ ( 𝑤 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V → ( 𝑤 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑤 , ∪ ( 𝑤 ∖ { 𝑧 } ) , 𝑧 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 14 | 11 13 | syl | ⊢ ( 𝐷 ∈ V → ( 𝑤 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑤 , ∪ ( 𝑤 ∖ { 𝑧 } ) , 𝑧 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 15 | 1 | pmtrfval | ⊢ ( 𝐷 ∈ V → 𝑇 = ( 𝑤 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑤 , ∪ ( 𝑤 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 16 | 15 | fneq1d | ⊢ ( 𝐷 ∈ V → ( 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↔ ( 𝑤 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑤 , ∪ ( 𝑤 ∖ { 𝑧 } ) , 𝑧 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) ) |
| 17 | 14 16 | mpbird | ⊢ ( 𝐷 ∈ V → 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 18 | fvelrnb | ⊢ ( 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } → ( 𝐹 ∈ ran 𝑇 ↔ ∃ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑇 ‘ 𝑦 ) = 𝐹 ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐷 ∈ V → ( 𝐹 ∈ ran 𝑇 ↔ ∃ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑇 ‘ 𝑦 ) = 𝐹 ) ) |
| 20 | 2 | eleq2i | ⊢ ( 𝐹 ∈ 𝑅 ↔ 𝐹 ∈ ran 𝑇 ) |
| 21 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 2o ↔ 𝑦 ≈ 2o ) ) | |
| 22 | 21 | rexrab | ⊢ ( ∃ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑇 ‘ 𝑦 ) = 𝐹 ↔ ∃ 𝑦 ∈ 𝒫 𝐷 ( 𝑦 ≈ 2o ∧ ( 𝑇 ‘ 𝑦 ) = 𝐹 ) ) |
| 23 | 22 | bicomi | ⊢ ( ∃ 𝑦 ∈ 𝒫 𝐷 ( 𝑦 ≈ 2o ∧ ( 𝑇 ‘ 𝑦 ) = 𝐹 ) ↔ ∃ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑇 ‘ 𝑦 ) = 𝐹 ) |
| 24 | 19 20 23 | 3bitr4g | ⊢ ( 𝐷 ∈ V → ( 𝐹 ∈ 𝑅 ↔ ∃ 𝑦 ∈ 𝒫 𝐷 ( 𝑦 ≈ 2o ∧ ( 𝑇 ‘ 𝑦 ) = 𝐹 ) ) ) |
| 25 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝐷 → 𝑦 ⊆ 𝐷 ) | |
| 26 | simp1 | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → 𝐷 ∈ V ) | |
| 27 | 1 | pmtrmvd | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑦 ) |
| 28 | simp2 | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → 𝑦 ⊆ 𝐷 ) | |
| 29 | 27 28 | eqsstrd | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ⊆ 𝐷 ) |
| 30 | simp3 | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → 𝑦 ≈ 2o ) | |
| 31 | 27 30 | eqbrtrd | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ≈ 2o ) |
| 32 | 26 29 31 | 3jca | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → ( 𝐷 ∈ V ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ⊆ 𝐷 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ≈ 2o ) ) |
| 33 | 27 | eqcomd | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → 𝑦 = dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ) ) |
| 35 | 32 34 | jca | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → ( ( 𝐷 ∈ V ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ⊆ 𝐷 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ≈ 2o ) ∧ ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ) ) ) |
| 36 | difeq1 | ⊢ ( ( 𝑇 ‘ 𝑦 ) = 𝐹 → ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = ( 𝐹 ∖ I ) ) | |
| 37 | 36 | dmeqd | ⊢ ( ( 𝑇 ‘ 𝑦 ) = 𝐹 → dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = dom ( 𝐹 ∖ I ) ) |
| 38 | 37 3 | eqtr4di | ⊢ ( ( 𝑇 ‘ 𝑦 ) = 𝐹 → dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑃 ) |
| 39 | sseq1 | ⊢ ( dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑃 → ( dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ⊆ 𝐷 ↔ 𝑃 ⊆ 𝐷 ) ) | |
| 40 | breq1 | ⊢ ( dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑃 → ( dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ≈ 2o ↔ 𝑃 ≈ 2o ) ) | |
| 41 | 39 40 | 3anbi23d | ⊢ ( dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑃 → ( ( 𝐷 ∈ V ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ⊆ 𝐷 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ≈ 2o ) ↔ ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ) ) |
| 42 | 41 | adantl | ⊢ ( ( ( 𝑇 ‘ 𝑦 ) = 𝐹 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑃 ) → ( ( 𝐷 ∈ V ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ⊆ 𝐷 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ≈ 2o ) ↔ ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ) ) |
| 43 | simpl | ⊢ ( ( ( 𝑇 ‘ 𝑦 ) = 𝐹 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑃 ) → ( 𝑇 ‘ 𝑦 ) = 𝐹 ) | |
| 44 | fveq2 | ⊢ ( dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑃 → ( 𝑇 ‘ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ) = ( 𝑇 ‘ 𝑃 ) ) | |
| 45 | 44 | adantl | ⊢ ( ( ( 𝑇 ‘ 𝑦 ) = 𝐹 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑃 ) → ( 𝑇 ‘ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ) = ( 𝑇 ‘ 𝑃 ) ) |
| 46 | 43 45 | eqeq12d | ⊢ ( ( ( 𝑇 ‘ 𝑦 ) = 𝐹 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑃 ) → ( ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ) ↔ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) |
| 47 | 42 46 | anbi12d | ⊢ ( ( ( 𝑇 ‘ 𝑦 ) = 𝐹 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) = 𝑃 ) → ( ( ( 𝐷 ∈ V ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ⊆ 𝐷 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ≈ 2o ) ∧ ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ) ) ↔ ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) ) |
| 48 | 38 47 | mpdan | ⊢ ( ( 𝑇 ‘ 𝑦 ) = 𝐹 → ( ( ( 𝐷 ∈ V ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ⊆ 𝐷 ∧ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ≈ 2o ) ∧ ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ dom ( ( 𝑇 ‘ 𝑦 ) ∖ I ) ) ) ↔ ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) ) |
| 49 | 35 48 | syl5ibcom | ⊢ ( ( 𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o ) → ( ( 𝑇 ‘ 𝑦 ) = 𝐹 → ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) ) |
| 50 | 49 | 3exp | ⊢ ( 𝐷 ∈ V → ( 𝑦 ⊆ 𝐷 → ( 𝑦 ≈ 2o → ( ( 𝑇 ‘ 𝑦 ) = 𝐹 → ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) ) ) ) |
| 51 | 50 | imp4a | ⊢ ( 𝐷 ∈ V → ( 𝑦 ⊆ 𝐷 → ( ( 𝑦 ≈ 2o ∧ ( 𝑇 ‘ 𝑦 ) = 𝐹 ) → ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) ) ) |
| 52 | 25 51 | syl5 | ⊢ ( 𝐷 ∈ V → ( 𝑦 ∈ 𝒫 𝐷 → ( ( 𝑦 ≈ 2o ∧ ( 𝑇 ‘ 𝑦 ) = 𝐹 ) → ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) ) ) |
| 53 | 52 | rexlimdv | ⊢ ( 𝐷 ∈ V → ( ∃ 𝑦 ∈ 𝒫 𝐷 ( 𝑦 ≈ 2o ∧ ( 𝑇 ‘ 𝑦 ) = 𝐹 ) → ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) ) |
| 54 | 24 53 | sylbid | ⊢ ( 𝐷 ∈ V → ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) ) |
| 55 | 9 54 | mpcom | ⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) |