This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb , where we read S as S ( i ) . Theorem 15.5.2 of MaedaMaeda p. 62. (Contributed by NM, 5-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapglb.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapglb.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| pmapglb.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapglbx | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapglb.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapglb.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 3 | pmapglb.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 4 | hlclat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ CLat ) |
| 6 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 7 | 1 6 | atbase | ⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ 𝐵 ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑝 ∈ 𝐵 ) |
| 9 | r19.29 | ⊢ ( ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 ) → ∃ 𝑖 ∈ 𝐼 ( 𝑆 ∈ 𝐵 ∧ 𝑦 = 𝑆 ) ) | |
| 10 | eleq1a | ⊢ ( 𝑆 ∈ 𝐵 → ( 𝑦 = 𝑆 → 𝑦 ∈ 𝐵 ) ) | |
| 11 | 10 | imp | ⊢ ( ( 𝑆 ∈ 𝐵 ∧ 𝑦 = 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 12 | 11 | rexlimivw | ⊢ ( ∃ 𝑖 ∈ 𝐼 ( 𝑆 ∈ 𝐵 ∧ 𝑦 = 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 13 | 9 12 | syl | ⊢ ( ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 14 | 13 | ex | ⊢ ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 → ( ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 → 𝑦 ∈ 𝐵 ) ) |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 → 𝑦 ∈ 𝐵 ) ) |
| 16 | 15 | abssdv | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ⊆ 𝐵 ) |
| 17 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 18 | 1 17 2 | clatleglb | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑝 ∈ 𝐵 ∧ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ⊆ 𝐵 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 19 | 5 8 16 18 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 20 | vex | ⊢ 𝑧 ∈ V | |
| 21 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = 𝑆 ↔ 𝑧 = 𝑆 ) ) | |
| 22 | 21 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝑆 ) ) |
| 23 | 20 22 | elab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝑆 ) |
| 24 | 23 | imbi1i | ⊢ ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∃ 𝑖 ∈ 𝐼 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 25 | r19.23v | ⊢ ( ∀ 𝑖 ∈ 𝐼 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∃ 𝑖 ∈ 𝐼 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) | |
| 26 | 24 25 | bitr4i | ⊢ ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 27 | 26 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑖 ∈ 𝐼 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 28 | df-ral | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) | |
| 29 | ralcom4 | ⊢ ( ∀ 𝑖 ∈ 𝐼 ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑖 ∈ 𝐼 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) | |
| 30 | 27 28 29 | 3bitr4i | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑖 ∈ 𝐼 ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 31 | nfv | ⊢ Ⅎ 𝑧 𝑝 ( le ‘ 𝐾 ) 𝑆 | |
| 32 | breq2 | ⊢ ( 𝑧 = 𝑆 → ( 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) | |
| 33 | 31 32 | ceqsalg | ⊢ ( 𝑆 ∈ 𝐵 → ( ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
| 34 | 33 | ralimi | ⊢ ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 → ∀ 𝑖 ∈ 𝐼 ( ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
| 35 | ralbi | ⊢ ( ∀ 𝑖 ∈ 𝐼 ( ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) → ( ∀ 𝑖 ∈ 𝐼 ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) | |
| 36 | 34 35 | syl | ⊢ ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 → ( ∀ 𝑖 ∈ 𝐼 ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
| 37 | 30 36 | bitrid | ⊢ ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 → ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
| 38 | 37 | ad2antlr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
| 39 | 19 38 | bitrd | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ↔ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
| 40 | 39 | rabbidva | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
| 41 | 40 | 3adant3 | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
| 42 | simp1 | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → 𝐾 ∈ HL ) | |
| 43 | 14 | abssdv | ⊢ ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 → { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ⊆ 𝐵 ) |
| 44 | 1 2 | clatglbcl | ⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ⊆ 𝐵 ) → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 ) |
| 45 | 4 43 44 | syl2an | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 ) |
| 46 | 45 | 3adant3 | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 ) |
| 47 | 1 17 6 3 | pmapval | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) } ) |
| 48 | 42 46 47 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) } ) |
| 49 | iinrab | ⊢ ( 𝐼 ≠ ∅ → ∩ 𝑖 ∈ 𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) | |
| 50 | 49 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ∩ 𝑖 ∈ 𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
| 51 | 41 48 50 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ∩ 𝑖 ∈ 𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
| 52 | nfv | ⊢ Ⅎ 𝑖 𝐾 ∈ HL | |
| 53 | nfra1 | ⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 | |
| 54 | nfv | ⊢ Ⅎ 𝑖 𝐼 ≠ ∅ | |
| 55 | 52 53 54 | nf3an | ⊢ Ⅎ 𝑖 ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) |
| 56 | simpl1 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 𝑖 ∈ 𝐼 ) → 𝐾 ∈ HL ) | |
| 57 | rspa | ⊢ ( ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼 ) → 𝑆 ∈ 𝐵 ) | |
| 58 | 57 | 3ad2antl2 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 𝑖 ∈ 𝐼 ) → 𝑆 ∈ 𝐵 ) |
| 59 | 1 17 6 3 | pmapval | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑆 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
| 60 | 56 58 59 | syl2anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑀 ‘ 𝑆 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
| 61 | 55 60 | iineq2d | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) = ∩ 𝑖 ∈ 𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
| 62 | 51 61 | eqtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) |