This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT . (Contributed by NM, 29-Oct-2003) (Proof shortened by BJ, 29-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsalg.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| ceqsalg.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ceqsalg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsalg.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | ceqsalg.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 4 | ceqsalt | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) | |
| 5 | 1 3 4 | mp3an12 | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |