This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clatglb.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| clatglb.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| clatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| Assertion | clatleglb | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatglb.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | clatglb.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | clatglb.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | 1 2 3 | clatglble | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ) |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ) |
| 6 | 5 | 3adantl2 | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ) |
| 7 | simpl1 | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ CLat ) | |
| 8 | clatl | ⊢ ( 𝐾 ∈ CLat → 𝐾 ∈ Lat ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ Lat ) |
| 10 | simpl2 | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) | |
| 11 | 1 3 | clatglbcl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ) |
| 14 | ssel | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝐵 ) ) | |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ 𝐵 ) ) |
| 16 | 15 | imp | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 17 | 1 2 | lattr | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑆 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ) → 𝑋 ≤ 𝑦 ) ) |
| 18 | 9 10 13 16 17 | syl13anc | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ∧ ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ) → 𝑋 ≤ 𝑦 ) ) |
| 19 | 6 18 | mpan2d | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) → 𝑋 ≤ 𝑦 ) ) |
| 20 | 19 | ralrimdva | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ) ) |
| 21 | 1 2 3 | clatglb | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝐺 ‘ 𝑆 ) ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) |
| 22 | breq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦 ) ) | |
| 23 | 22 | ralbidv | ⊢ ( 𝑧 = 𝑋 → ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ) ) |
| 24 | breq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ↔ 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) | |
| 25 | 23 24 | imbi12d | ⊢ ( 𝑧 = 𝑋 → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) |
| 26 | 25 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ ( 𝐺 ‘ 𝑆 ) ) → ( 𝑋 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) |
| 27 | 21 26 | simpl2im | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑋 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) |
| 28 | 27 | ex | ⊢ ( 𝐾 ∈ CLat → ( 𝑆 ⊆ 𝐵 → ( 𝑋 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) ) |
| 29 | 28 | com23 | ⊢ ( 𝐾 ∈ CLat → ( 𝑋 ∈ 𝐵 → ( 𝑆 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) ) ) |
| 30 | 29 | 3imp | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 → 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ) ) |
| 31 | 20 30 | impbid | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑋 ≤ ( 𝐺 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ) ) |