This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 2-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| pmapfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| pmapfval.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapval | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) = { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | pmapfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | pmapfval.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | pmapfval | ⊢ ( 𝐾 ∈ 𝐶 → 𝑀 = ( 𝑥 ∈ 𝐵 ↦ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) ) |
| 6 | 5 | fveq1d | ⊢ ( 𝐾 ∈ 𝐶 → ( 𝑀 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝐵 ↦ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) ‘ 𝑋 ) ) |
| 7 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑎 ≤ 𝑥 ↔ 𝑎 ≤ 𝑋 ) ) | |
| 8 | 7 | rabbidv | ⊢ ( 𝑥 = 𝑋 → { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } = { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋 } ) |
| 9 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) | |
| 10 | 3 | fvexi | ⊢ 𝐴 ∈ V |
| 11 | 10 | rabex | ⊢ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋 } ∈ V |
| 12 | 8 9 11 | fvmpt | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) ‘ 𝑋 ) = { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋 } ) |
| 13 | 6 12 | sylan9eq | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) = { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋 } ) |