This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the GLB of a set of lattice elements S . Variant of Theorem 15.5.2 of MaedaMaeda p. 62. (Contributed by NM, 5-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapglb.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapglb.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| pmapglb.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapglb | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapglb.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapglb.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 3 | pmapglb.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 4 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥 ) ) | |
| 5 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 6 | 5 | anbi1ci | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥 ) ↔ ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆 ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆 ) ) |
| 8 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆 ) ) | |
| 9 | 8 | equsexvw | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆 ) ↔ 𝑦 ∈ 𝑆 ) |
| 10 | 4 7 9 | 3bitri | ⊢ ( ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ 𝑦 ∈ 𝑆 ) |
| 11 | 10 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } = { 𝑦 ∣ 𝑦 ∈ 𝑆 } |
| 12 | abid2 | ⊢ { 𝑦 ∣ 𝑦 ∈ 𝑆 } = 𝑆 | |
| 13 | 11 12 | eqtr2i | ⊢ 𝑆 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } |
| 14 | 13 | fveq2i | ⊢ ( 𝐺 ‘ 𝑆 ) = ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } ) |
| 15 | 14 | fveq2i | ⊢ ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } ) ) |
| 16 | dfss3 | ⊢ ( 𝑆 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝑆 𝑥 ∈ 𝐵 ) | |
| 17 | 1 2 3 | pmapglbx | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ∈ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |
| 18 | 16 17 | syl3an2b | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑆 𝑦 = 𝑥 } ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |
| 19 | 15 18 | eqtrid | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |