This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocin | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shocel | ⊢ ( 𝐴 ∈ Sℋ → ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 ) ) ) | |
| 2 | oveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ·ih 𝑥 ) ) | |
| 3 | 2 | eqeq1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ·ih 𝑦 ) = 0 ↔ ( 𝑥 ·ih 𝑥 ) = 0 ) ) |
| 4 | 3 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 → ( 𝑥 ∈ 𝐴 → ( 𝑥 ·ih 𝑥 ) = 0 ) ) |
| 5 | his6 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑥 ·ih 𝑥 ) = 0 ↔ 𝑥 = 0ℎ ) ) | |
| 6 | 5 | biimpd | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑥 ·ih 𝑥 ) = 0 → 𝑥 = 0ℎ ) ) |
| 7 | 4 6 | sylan9r | ⊢ ( ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 ) → ( 𝑥 ∈ 𝐴 → 𝑥 = 0ℎ ) ) |
| 8 | 1 7 | biimtrdi | ⊢ ( 𝐴 ∈ Sℋ → ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) → ( 𝑥 ∈ 𝐴 → 𝑥 = 0ℎ ) ) ) |
| 9 | 8 | com23 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) → 𝑥 = 0ℎ ) ) ) |
| 10 | 9 | impd | ⊢ ( 𝐴 ∈ Sℋ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) → 𝑥 = 0ℎ ) ) |
| 11 | sh0 | ⊢ ( 𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴 ) | |
| 12 | oc0 | ⊢ ( 𝐴 ∈ Sℋ → 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) | |
| 13 | 11 12 | jca | ⊢ ( 𝐴 ∈ Sℋ → ( 0ℎ ∈ 𝐴 ∧ 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) ) |
| 14 | eleq1 | ⊢ ( 𝑥 = 0ℎ → ( 𝑥 ∈ 𝐴 ↔ 0ℎ ∈ 𝐴 ) ) | |
| 15 | eleq1 | ⊢ ( 𝑥 = 0ℎ → ( 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ↔ 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑥 = 0ℎ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ ( 0ℎ ∈ 𝐴 ∧ 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 17 | 13 16 | syl5ibrcom | ⊢ ( 𝐴 ∈ Sℋ → ( 𝑥 = 0ℎ → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 18 | 10 17 | impbid | ⊢ ( 𝐴 ∈ Sℋ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) ↔ 𝑥 = 0ℎ ) ) |
| 19 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ⊥ ‘ 𝐴 ) ) ) | |
| 20 | elch0 | ⊢ ( 𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ ) | |
| 21 | 18 19 20 | 3bitr4g | ⊢ ( 𝐴 ∈ Sℋ → ( 𝑥 ∈ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) ↔ 𝑥 ∈ 0ℋ ) ) |
| 22 | 21 | eqrdv | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ) |