This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjhthmo | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) | |
| 2 | reeanv | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) | |
| 3 | simpll1 | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → 𝐴 ∈ Sℋ ) | |
| 4 | simpll2 | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → 𝐵 ∈ Sℋ ) | |
| 5 | simpll3 | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) | |
| 6 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → 𝑥 ∈ 𝐴 ) | |
| 7 | simprll | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 8 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → 𝑧 ∈ 𝐴 ) | |
| 9 | simprlr | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → 𝑤 ∈ 𝐵 ) | |
| 10 | simprrl | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) | |
| 11 | simprrr | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) | |
| 12 | 10 11 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) |
| 13 | 3 4 5 6 7 8 9 12 | shuni | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) |
| 14 | 13 | simpld | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) → 𝑥 = 𝑧 ) |
| 15 | 14 | exp32 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) → 𝑥 = 𝑧 ) ) ) |
| 16 | 15 | rexlimdvv | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) → 𝑥 = 𝑧 ) ) |
| 17 | 2 16 | biimtrrid | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) → 𝑥 = 𝑧 ) ) |
| 18 | 17 | expimpd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 19 | 1 18 | biimtrrid | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 20 | 19 | alrimivv | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 21 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 22 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑦 ) ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝐶 = ( 𝑥 +ℎ 𝑦 ) ↔ 𝐶 = ( 𝑧 +ℎ 𝑦 ) ) ) |
| 24 | 23 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑦 ) ) ) |
| 25 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) | |
| 26 | 25 | eqeq2d | ⊢ ( 𝑦 = 𝑤 → ( 𝐶 = ( 𝑧 +ℎ 𝑦 ) ↔ 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) |
| 27 | 26 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑦 ) ↔ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) |
| 28 | 24 27 | bitrdi | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ↔ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) |
| 29 | 21 28 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) ) |
| 30 | 29 | mo4 | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐵 𝐶 = ( 𝑧 +ℎ 𝑤 ) ) ) → 𝑥 = 𝑧 ) ) |
| 31 | 20 30 | sylibr | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑦 ) ) ) |