This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a projection. (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjhval | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhfval | ⊢ ( 𝐻 ∈ Cℋ → ( projℎ ‘ 𝐻 ) = ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝐻 ∈ Cℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) ) ‘ 𝐴 ) ) |
| 3 | eqeq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) ↔ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) | |
| 4 | 3 | rexbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑧 = ( 𝑥 +ℎ 𝑦 ) ↔ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 5 | 4 | riotabidv | ⊢ ( 𝑧 = 𝐴 → ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) = ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 6 | eqid | ⊢ ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) ) = ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) ) | |
| 7 | riotaex | ⊢ ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ∈ V | |
| 8 | 5 6 7 | fvmpt | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) ) ‘ 𝐴 ) = ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 9 | 2 8 | sylan9eq | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ℩ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |