This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 12-Jun-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pilem2.1 | |- ( ph -> A e. ( 2 (,) 4 ) ) |
|
| pilem2.2 | |- ( ph -> B e. RR+ ) |
||
| pilem2.3 | |- ( ph -> ( sin ` A ) = 0 ) |
||
| pilem2.4 | |- ( ph -> ( sin ` B ) = 0 ) |
||
| Assertion | pilem2 | |- ( ph -> ( ( _pi + A ) / 2 ) <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pilem2.1 | |- ( ph -> A e. ( 2 (,) 4 ) ) |
|
| 2 | pilem2.2 | |- ( ph -> B e. RR+ ) |
|
| 3 | pilem2.3 | |- ( ph -> ( sin ` A ) = 0 ) |
|
| 4 | pilem2.4 | |- ( ph -> ( sin ` B ) = 0 ) |
|
| 5 | df-pi | |- _pi = inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) |
|
| 6 | inss1 | |- ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR+ |
|
| 7 | rpssre | |- RR+ C_ RR |
|
| 8 | 6 7 | sstri | |- ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR |
| 9 | 8 | a1i | |- ( ph -> ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR ) |
| 10 | 0re | |- 0 e. RR |
|
| 11 | elinel1 | |- ( y e. ( RR+ i^i ( `' sin " { 0 } ) ) -> y e. RR+ ) |
|
| 12 | 11 | rpge0d | |- ( y e. ( RR+ i^i ( `' sin " { 0 } ) ) -> 0 <_ y ) |
| 13 | 12 | rgen | |- A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ y |
| 14 | breq1 | |- ( x = 0 -> ( x <_ y <-> 0 <_ y ) ) |
|
| 15 | 14 | ralbidv | |- ( x = 0 -> ( A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y <-> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ y ) ) |
| 16 | 15 | rspcev | |- ( ( 0 e. RR /\ A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ y ) -> E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y ) |
| 17 | 10 13 16 | mp2an | |- E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y |
| 18 | 17 | a1i | |- ( ph -> E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y ) |
| 19 | 2re | |- 2 e. RR |
|
| 20 | 2 | rpred | |- ( ph -> B e. RR ) |
| 21 | remulcl | |- ( ( 2 e. RR /\ B e. RR ) -> ( 2 x. B ) e. RR ) |
|
| 22 | 19 20 21 | sylancr | |- ( ph -> ( 2 x. B ) e. RR ) |
| 23 | elioore | |- ( A e. ( 2 (,) 4 ) -> A e. RR ) |
|
| 24 | 1 23 | syl | |- ( ph -> A e. RR ) |
| 25 | 22 24 | resubcld | |- ( ph -> ( ( 2 x. B ) - A ) e. RR ) |
| 26 | 4re | |- 4 e. RR |
|
| 27 | 26 | a1i | |- ( ph -> 4 e. RR ) |
| 28 | eliooord | |- ( A e. ( 2 (,) 4 ) -> ( 2 < A /\ A < 4 ) ) |
|
| 29 | 1 28 | syl | |- ( ph -> ( 2 < A /\ A < 4 ) ) |
| 30 | 29 | simprd | |- ( ph -> A < 4 ) |
| 31 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 32 | 19 | a1i | |- ( ph -> 2 e. RR ) |
| 33 | 0red | |- ( ph -> 0 e. RR ) |
|
| 34 | 2pos | |- 0 < 2 |
|
| 35 | 34 | a1i | |- ( ph -> 0 < 2 ) |
| 36 | 29 | simpld | |- ( ph -> 2 < A ) |
| 37 | 33 32 24 35 36 | lttrd | |- ( ph -> 0 < A ) |
| 38 | 24 37 | elrpd | |- ( ph -> A e. RR+ ) |
| 39 | pilem1 | |- ( A e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( A e. RR+ /\ ( sin ` A ) = 0 ) ) |
|
| 40 | 38 3 39 | sylanbrc | |- ( ph -> A e. ( RR+ i^i ( `' sin " { 0 } ) ) ) |
| 41 | 40 | ne0d | |- ( ph -> ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) ) |
| 42 | infrecl | |- ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) /\ E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
|
| 43 | 8 17 42 | mp3an13 | |- ( ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
| 44 | 41 43 | syl | |- ( ph -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
| 45 | pilem1 | |- ( x e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( x e. RR+ /\ ( sin ` x ) = 0 ) ) |
|
| 46 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 47 | 46 | adantl | |- ( ( ph /\ x e. RR+ ) -> x e. RR ) |
| 48 | letric | |- ( ( 2 e. RR /\ x e. RR ) -> ( 2 <_ x \/ x <_ 2 ) ) |
|
| 49 | 19 47 48 | sylancr | |- ( ( ph /\ x e. RR+ ) -> ( 2 <_ x \/ x <_ 2 ) ) |
| 50 | 49 | ord | |- ( ( ph /\ x e. RR+ ) -> ( -. 2 <_ x -> x <_ 2 ) ) |
| 51 | 46 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> x e. RR ) |
| 52 | rpgt0 | |- ( x e. RR+ -> 0 < x ) |
|
| 53 | 52 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> 0 < x ) |
| 54 | simpr | |- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> x <_ 2 ) |
|
| 55 | 0xr | |- 0 e. RR* |
|
| 56 | elioc2 | |- ( ( 0 e. RR* /\ 2 e. RR ) -> ( x e. ( 0 (,] 2 ) <-> ( x e. RR /\ 0 < x /\ x <_ 2 ) ) ) |
|
| 57 | 55 19 56 | mp2an | |- ( x e. ( 0 (,] 2 ) <-> ( x e. RR /\ 0 < x /\ x <_ 2 ) ) |
| 58 | 51 53 54 57 | syl3anbrc | |- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> x e. ( 0 (,] 2 ) ) |
| 59 | sin02gt0 | |- ( x e. ( 0 (,] 2 ) -> 0 < ( sin ` x ) ) |
|
| 60 | 58 59 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> 0 < ( sin ` x ) ) |
| 61 | 60 | gt0ne0d | |- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> ( sin ` x ) =/= 0 ) |
| 62 | 61 | ex | |- ( ( ph /\ x e. RR+ ) -> ( x <_ 2 -> ( sin ` x ) =/= 0 ) ) |
| 63 | 50 62 | syld | |- ( ( ph /\ x e. RR+ ) -> ( -. 2 <_ x -> ( sin ` x ) =/= 0 ) ) |
| 64 | 63 | necon4bd | |- ( ( ph /\ x e. RR+ ) -> ( ( sin ` x ) = 0 -> 2 <_ x ) ) |
| 65 | 64 | expimpd | |- ( ph -> ( ( x e. RR+ /\ ( sin ` x ) = 0 ) -> 2 <_ x ) ) |
| 66 | 45 65 | biimtrid | |- ( ph -> ( x e. ( RR+ i^i ( `' sin " { 0 } ) ) -> 2 <_ x ) ) |
| 67 | 66 | ralrimiv | |- ( ph -> A. x e. ( RR+ i^i ( `' sin " { 0 } ) ) 2 <_ x ) |
| 68 | infregelb | |- ( ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) /\ E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y ) /\ 2 e. RR ) -> ( 2 <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <-> A. x e. ( RR+ i^i ( `' sin " { 0 } ) ) 2 <_ x ) ) |
|
| 69 | 9 41 18 32 68 | syl31anc | |- ( ph -> ( 2 <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <-> A. x e. ( RR+ i^i ( `' sin " { 0 } ) ) 2 <_ x ) ) |
| 70 | 67 69 | mpbird | |- ( ph -> 2 <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) ) |
| 71 | pilem1 | |- ( B e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( B e. RR+ /\ ( sin ` B ) = 0 ) ) |
|
| 72 | 2 4 71 | sylanbrc | |- ( ph -> B e. ( RR+ i^i ( `' sin " { 0 } ) ) ) |
| 73 | infrelb | |- ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y /\ B e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ B ) |
|
| 74 | 9 18 72 73 | syl3anc | |- ( ph -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ B ) |
| 75 | 32 44 20 70 74 | letrd | |- ( ph -> 2 <_ B ) |
| 76 | 19 34 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 77 | 76 | a1i | |- ( ph -> ( 2 e. RR /\ 0 < 2 ) ) |
| 78 | lemul2 | |- ( ( 2 e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 2 <_ B <-> ( 2 x. 2 ) <_ ( 2 x. B ) ) ) |
|
| 79 | 32 20 77 78 | syl3anc | |- ( ph -> ( 2 <_ B <-> ( 2 x. 2 ) <_ ( 2 x. B ) ) ) |
| 80 | 75 79 | mpbid | |- ( ph -> ( 2 x. 2 ) <_ ( 2 x. B ) ) |
| 81 | 31 80 | eqbrtrrid | |- ( ph -> 4 <_ ( 2 x. B ) ) |
| 82 | 24 27 22 30 81 | ltletrd | |- ( ph -> A < ( 2 x. B ) ) |
| 83 | 24 22 | posdifd | |- ( ph -> ( A < ( 2 x. B ) <-> 0 < ( ( 2 x. B ) - A ) ) ) |
| 84 | 82 83 | mpbid | |- ( ph -> 0 < ( ( 2 x. B ) - A ) ) |
| 85 | 25 84 | elrpd | |- ( ph -> ( ( 2 x. B ) - A ) e. RR+ ) |
| 86 | 22 | recnd | |- ( ph -> ( 2 x. B ) e. CC ) |
| 87 | 24 | recnd | |- ( ph -> A e. CC ) |
| 88 | sinsub | |- ( ( ( 2 x. B ) e. CC /\ A e. CC ) -> ( sin ` ( ( 2 x. B ) - A ) ) = ( ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) - ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) ) ) |
|
| 89 | 86 87 88 | syl2anc | |- ( ph -> ( sin ` ( ( 2 x. B ) - A ) ) = ( ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) - ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) ) ) |
| 90 | 20 | recnd | |- ( ph -> B e. CC ) |
| 91 | sin2t | |- ( B e. CC -> ( sin ` ( 2 x. B ) ) = ( 2 x. ( ( sin ` B ) x. ( cos ` B ) ) ) ) |
|
| 92 | 90 91 | syl | |- ( ph -> ( sin ` ( 2 x. B ) ) = ( 2 x. ( ( sin ` B ) x. ( cos ` B ) ) ) ) |
| 93 | 4 | oveq1d | |- ( ph -> ( ( sin ` B ) x. ( cos ` B ) ) = ( 0 x. ( cos ` B ) ) ) |
| 94 | 90 | coscld | |- ( ph -> ( cos ` B ) e. CC ) |
| 95 | 94 | mul02d | |- ( ph -> ( 0 x. ( cos ` B ) ) = 0 ) |
| 96 | 93 95 | eqtrd | |- ( ph -> ( ( sin ` B ) x. ( cos ` B ) ) = 0 ) |
| 97 | 96 | oveq2d | |- ( ph -> ( 2 x. ( ( sin ` B ) x. ( cos ` B ) ) ) = ( 2 x. 0 ) ) |
| 98 | 2t0e0 | |- ( 2 x. 0 ) = 0 |
|
| 99 | 97 98 | eqtrdi | |- ( ph -> ( 2 x. ( ( sin ` B ) x. ( cos ` B ) ) ) = 0 ) |
| 100 | 92 99 | eqtrd | |- ( ph -> ( sin ` ( 2 x. B ) ) = 0 ) |
| 101 | 100 | oveq1d | |- ( ph -> ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) = ( 0 x. ( cos ` A ) ) ) |
| 102 | 87 | coscld | |- ( ph -> ( cos ` A ) e. CC ) |
| 103 | 102 | mul02d | |- ( ph -> ( 0 x. ( cos ` A ) ) = 0 ) |
| 104 | 101 103 | eqtrd | |- ( ph -> ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) = 0 ) |
| 105 | 3 | oveq2d | |- ( ph -> ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) = ( ( cos ` ( 2 x. B ) ) x. 0 ) ) |
| 106 | 86 | coscld | |- ( ph -> ( cos ` ( 2 x. B ) ) e. CC ) |
| 107 | 106 | mul01d | |- ( ph -> ( ( cos ` ( 2 x. B ) ) x. 0 ) = 0 ) |
| 108 | 105 107 | eqtrd | |- ( ph -> ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) = 0 ) |
| 109 | 104 108 | oveq12d | |- ( ph -> ( ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) - ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) ) = ( 0 - 0 ) ) |
| 110 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 111 | 109 110 | eqtrdi | |- ( ph -> ( ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) - ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) ) = 0 ) |
| 112 | 89 111 | eqtrd | |- ( ph -> ( sin ` ( ( 2 x. B ) - A ) ) = 0 ) |
| 113 | pilem1 | |- ( ( ( 2 x. B ) - A ) e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( ( ( 2 x. B ) - A ) e. RR+ /\ ( sin ` ( ( 2 x. B ) - A ) ) = 0 ) ) |
|
| 114 | 85 112 113 | sylanbrc | |- ( ph -> ( ( 2 x. B ) - A ) e. ( RR+ i^i ( `' sin " { 0 } ) ) ) |
| 115 | infrelb | |- ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y /\ ( ( 2 x. B ) - A ) e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ ( ( 2 x. B ) - A ) ) |
|
| 116 | 9 18 114 115 | syl3anc | |- ( ph -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ ( ( 2 x. B ) - A ) ) |
| 117 | 5 116 | eqbrtrid | |- ( ph -> _pi <_ ( ( 2 x. B ) - A ) ) |
| 118 | 5 44 | eqeltrid | |- ( ph -> _pi e. RR ) |
| 119 | leaddsub | |- ( ( _pi e. RR /\ A e. RR /\ ( 2 x. B ) e. RR ) -> ( ( _pi + A ) <_ ( 2 x. B ) <-> _pi <_ ( ( 2 x. B ) - A ) ) ) |
|
| 120 | 118 24 22 119 | syl3anc | |- ( ph -> ( ( _pi + A ) <_ ( 2 x. B ) <-> _pi <_ ( ( 2 x. B ) - A ) ) ) |
| 121 | 117 120 | mpbird | |- ( ph -> ( _pi + A ) <_ ( 2 x. B ) ) |
| 122 | 118 24 | readdcld | |- ( ph -> ( _pi + A ) e. RR ) |
| 123 | ledivmul | |- ( ( ( _pi + A ) e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( _pi + A ) / 2 ) <_ B <-> ( _pi + A ) <_ ( 2 x. B ) ) ) |
|
| 124 | 122 20 77 123 | syl3anc | |- ( ph -> ( ( ( _pi + A ) / 2 ) <_ B <-> ( _pi + A ) <_ ( 2 x. B ) ) ) |
| 125 | 121 124 | mpbird | |- ( ph -> ( ( _pi + A ) / 2 ) <_ B ) |