This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of Enderton p. 134. The theorem is so-called because you can't putn + 1 pigeons inton holes (if each hole holds only one pigeon). The proof consists of phplem1 , phplem2 , nneneq , and this final piece of the proof. (Contributed by NM, 29-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | php | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | ⊢ ∅ ⊆ 𝐵 | |
| 2 | sspsstr | ⊢ ( ( ∅ ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐴 ) → ∅ ⊊ 𝐴 ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐵 ⊊ 𝐴 → ∅ ⊊ 𝐴 ) |
| 4 | 0pss | ⊢ ( ∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅ ) | |
| 5 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
| 6 | 4 5 | bitri | ⊢ ( ∅ ⊊ 𝐴 ↔ ¬ 𝐴 = ∅ ) |
| 7 | 3 6 | sylib | ⊢ ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 = ∅ ) |
| 8 | nn0suc | ⊢ ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) | |
| 9 | 8 | orcanai | ⊢ ( ( 𝐴 ∈ ω ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) |
| 10 | 7 9 | sylan2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) |
| 11 | pssnel | ⊢ ( 𝐵 ⊊ suc 𝑥 → ∃ 𝑦 ( 𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) ) | |
| 12 | pssss | ⊢ ( 𝐵 ⊊ suc 𝑥 → 𝐵 ⊆ suc 𝑥 ) | |
| 13 | ssdif | ⊢ ( 𝐵 ⊆ suc 𝑥 → ( 𝐵 ∖ { 𝑦 } ) ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ) | |
| 14 | disjsn | ⊢ ( ( 𝐵 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦 ∈ 𝐵 ) | |
| 15 | disj3 | ⊢ ( ( 𝐵 ∩ { 𝑦 } ) = ∅ ↔ 𝐵 = ( 𝐵 ∖ { 𝑦 } ) ) | |
| 16 | 14 15 | bitr3i | ⊢ ( ¬ 𝑦 ∈ 𝐵 ↔ 𝐵 = ( 𝐵 ∖ { 𝑦 } ) ) |
| 17 | sseq1 | ⊢ ( 𝐵 = ( 𝐵 ∖ { 𝑦 } ) → ( 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ↔ ( 𝐵 ∖ { 𝑦 } ) ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ) ) | |
| 18 | 16 17 | sylbi | ⊢ ( ¬ 𝑦 ∈ 𝐵 → ( 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ↔ ( 𝐵 ∖ { 𝑦 } ) ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ) ) |
| 19 | 13 18 | imbitrrid | ⊢ ( ¬ 𝑦 ∈ 𝐵 → ( 𝐵 ⊆ suc 𝑥 → 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ) ) |
| 20 | 12 19 | syl5 | ⊢ ( ¬ 𝑦 ∈ 𝐵 → ( 𝐵 ⊊ suc 𝑥 → 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ) ) |
| 21 | peano2 | ⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) | |
| 22 | nnfi | ⊢ ( suc 𝑥 ∈ ω → suc 𝑥 ∈ Fin ) | |
| 23 | diffi | ⊢ ( suc 𝑥 ∈ Fin → ( suc 𝑥 ∖ { 𝑦 } ) ∈ Fin ) | |
| 24 | ssdomfi | ⊢ ( ( suc 𝑥 ∖ { 𝑦 } ) ∈ Fin → ( 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) ) | |
| 25 | 21 22 23 24 | 4syl | ⊢ ( 𝑥 ∈ ω → ( 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) ) |
| 26 | 20 25 | sylan9 | ⊢ ( ( ¬ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ω ) → ( 𝐵 ⊊ suc 𝑥 → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) ) |
| 27 | 26 | 3impia | ⊢ ( ( ¬ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ω ∧ 𝐵 ⊊ suc 𝑥 ) → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) |
| 28 | 27 | 3com23 | ⊢ ( ( ¬ 𝑦 ∈ 𝐵 ∧ 𝐵 ⊊ suc 𝑥 ∧ 𝑥 ∈ ω ) → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) |
| 29 | 28 | 3expa | ⊢ ( ( ( ¬ 𝑦 ∈ 𝐵 ∧ 𝐵 ⊊ suc 𝑥 ) ∧ 𝑥 ∈ ω ) → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) |
| 30 | 29 | adantrr | ⊢ ( ( ( ¬ 𝑦 ∈ 𝐵 ∧ 𝐵 ⊊ suc 𝑥 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) ) → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) |
| 31 | nnfi | ⊢ ( 𝑥 ∈ ω → 𝑥 ∈ Fin ) | |
| 32 | 31 | ad2antrl | ⊢ ( ( 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) ) → 𝑥 ∈ Fin ) |
| 33 | simpl | ⊢ ( ( 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) ) → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) | |
| 34 | simpr | ⊢ ( ( 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) ) → ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) ) | |
| 35 | phplem1 | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) → 𝑥 ≈ ( suc 𝑥 ∖ { 𝑦 } ) ) | |
| 36 | ensymfib | ⊢ ( 𝑥 ∈ Fin → ( 𝑥 ≈ ( suc 𝑥 ∖ { 𝑦 } ) ↔ ( suc 𝑥 ∖ { 𝑦 } ) ≈ 𝑥 ) ) | |
| 37 | 31 36 | syl | ⊢ ( 𝑥 ∈ ω → ( 𝑥 ≈ ( suc 𝑥 ∖ { 𝑦 } ) ↔ ( suc 𝑥 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) → ( 𝑥 ≈ ( suc 𝑥 ∖ { 𝑦 } ) ↔ ( suc 𝑥 ∖ { 𝑦 } ) ≈ 𝑥 ) ) |
| 39 | 35 38 | mpbid | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) → ( suc 𝑥 ∖ { 𝑦 } ) ≈ 𝑥 ) |
| 40 | endom | ⊢ ( ( suc 𝑥 ∖ { 𝑦 } ) ≈ 𝑥 → ( suc 𝑥 ∖ { 𝑦 } ) ≼ 𝑥 ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) → ( suc 𝑥 ∖ { 𝑦 } ) ≼ 𝑥 ) |
| 42 | domtrfir | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ∧ ( suc 𝑥 ∖ { 𝑦 } ) ≼ 𝑥 ) → 𝐵 ≼ 𝑥 ) | |
| 43 | 41 42 | syl3an3 | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) ) → 𝐵 ≼ 𝑥 ) |
| 44 | 32 33 34 43 | syl3anc | ⊢ ( ( 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) ) → 𝐵 ≼ 𝑥 ) |
| 45 | 30 44 | sylancom | ⊢ ( ( ( ¬ 𝑦 ∈ 𝐵 ∧ 𝐵 ⊊ suc 𝑥 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) ) → 𝐵 ≼ 𝑥 ) |
| 46 | 45 | exp43 | ⊢ ( ¬ 𝑦 ∈ 𝐵 → ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → ( 𝑦 ∈ suc 𝑥 → 𝐵 ≼ 𝑥 ) ) ) ) |
| 47 | 46 | com4r | ⊢ ( 𝑦 ∈ suc 𝑥 → ( ¬ 𝑦 ∈ 𝐵 → ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → 𝐵 ≼ 𝑥 ) ) ) ) |
| 48 | 47 | imp | ⊢ ( ( 𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) → ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → 𝐵 ≼ 𝑥 ) ) ) |
| 49 | 48 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) → ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → 𝐵 ≼ 𝑥 ) ) ) |
| 50 | 11 49 | mpcom | ⊢ ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → 𝐵 ≼ 𝑥 ) ) |
| 51 | simp1 | ⊢ ( ( 𝑥 ∈ ω ∧ suc 𝑥 ≈ 𝐵 ∧ 𝐵 ≼ 𝑥 ) → 𝑥 ∈ ω ) | |
| 52 | endom | ⊢ ( suc 𝑥 ≈ 𝐵 → suc 𝑥 ≼ 𝐵 ) | |
| 53 | domtrfir | ⊢ ( ( 𝑥 ∈ Fin ∧ suc 𝑥 ≼ 𝐵 ∧ 𝐵 ≼ 𝑥 ) → suc 𝑥 ≼ 𝑥 ) | |
| 54 | 52 53 | syl3an2 | ⊢ ( ( 𝑥 ∈ Fin ∧ suc 𝑥 ≈ 𝐵 ∧ 𝐵 ≼ 𝑥 ) → suc 𝑥 ≼ 𝑥 ) |
| 55 | 31 54 | syl3an1 | ⊢ ( ( 𝑥 ∈ ω ∧ suc 𝑥 ≈ 𝐵 ∧ 𝐵 ≼ 𝑥 ) → suc 𝑥 ≼ 𝑥 ) |
| 56 | sssucid | ⊢ 𝑥 ⊆ suc 𝑥 | |
| 57 | ssdomfi | ⊢ ( suc 𝑥 ∈ Fin → ( 𝑥 ⊆ suc 𝑥 → 𝑥 ≼ suc 𝑥 ) ) | |
| 58 | 22 56 57 | mpisyl | ⊢ ( suc 𝑥 ∈ ω → 𝑥 ≼ suc 𝑥 ) |
| 59 | 21 58 | syl | ⊢ ( 𝑥 ∈ ω → 𝑥 ≼ suc 𝑥 ) |
| 60 | 59 | adantr | ⊢ ( ( 𝑥 ∈ ω ∧ suc 𝑥 ≼ 𝑥 ) → 𝑥 ≼ suc 𝑥 ) |
| 61 | sbthfi | ⊢ ( ( 𝑥 ∈ Fin ∧ suc 𝑥 ≼ 𝑥 ∧ 𝑥 ≼ suc 𝑥 ) → suc 𝑥 ≈ 𝑥 ) | |
| 62 | 31 61 | syl3an1 | ⊢ ( ( 𝑥 ∈ ω ∧ suc 𝑥 ≼ 𝑥 ∧ 𝑥 ≼ suc 𝑥 ) → suc 𝑥 ≈ 𝑥 ) |
| 63 | 60 62 | mpd3an3 | ⊢ ( ( 𝑥 ∈ ω ∧ suc 𝑥 ≼ 𝑥 ) → suc 𝑥 ≈ 𝑥 ) |
| 64 | 51 55 63 | syl2anc | ⊢ ( ( 𝑥 ∈ ω ∧ suc 𝑥 ≈ 𝐵 ∧ 𝐵 ≼ 𝑥 ) → suc 𝑥 ≈ 𝑥 ) |
| 65 | 64 | 3com23 | ⊢ ( ( 𝑥 ∈ ω ∧ 𝐵 ≼ 𝑥 ∧ suc 𝑥 ≈ 𝐵 ) → suc 𝑥 ≈ 𝑥 ) |
| 66 | 65 | 3expia | ⊢ ( ( 𝑥 ∈ ω ∧ 𝐵 ≼ 𝑥 ) → ( suc 𝑥 ≈ 𝐵 → suc 𝑥 ≈ 𝑥 ) ) |
| 67 | peano2b | ⊢ ( 𝑥 ∈ ω ↔ suc 𝑥 ∈ ω ) | |
| 68 | nnord | ⊢ ( suc 𝑥 ∈ ω → Ord suc 𝑥 ) | |
| 69 | 67 68 | sylbi | ⊢ ( 𝑥 ∈ ω → Ord suc 𝑥 ) |
| 70 | vex | ⊢ 𝑥 ∈ V | |
| 71 | 70 | sucid | ⊢ 𝑥 ∈ suc 𝑥 |
| 72 | nordeq | ⊢ ( ( Ord suc 𝑥 ∧ 𝑥 ∈ suc 𝑥 ) → suc 𝑥 ≠ 𝑥 ) | |
| 73 | 69 71 72 | sylancl | ⊢ ( 𝑥 ∈ ω → suc 𝑥 ≠ 𝑥 ) |
| 74 | nneneq | ⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑥 ≈ 𝑥 ↔ suc 𝑥 = 𝑥 ) ) | |
| 75 | 67 74 | sylanb | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑥 ≈ 𝑥 ↔ suc 𝑥 = 𝑥 ) ) |
| 76 | 75 | anidms | ⊢ ( 𝑥 ∈ ω → ( suc 𝑥 ≈ 𝑥 ↔ suc 𝑥 = 𝑥 ) ) |
| 77 | 76 | necon3bbid | ⊢ ( 𝑥 ∈ ω → ( ¬ suc 𝑥 ≈ 𝑥 ↔ suc 𝑥 ≠ 𝑥 ) ) |
| 78 | 73 77 | mpbird | ⊢ ( 𝑥 ∈ ω → ¬ suc 𝑥 ≈ 𝑥 ) |
| 79 | 66 78 | nsyli | ⊢ ( ( 𝑥 ∈ ω ∧ 𝐵 ≼ 𝑥 ) → ( 𝑥 ∈ ω → ¬ suc 𝑥 ≈ 𝐵 ) ) |
| 80 | 79 | expcom | ⊢ ( 𝐵 ≼ 𝑥 → ( 𝑥 ∈ ω → ( 𝑥 ∈ ω → ¬ suc 𝑥 ≈ 𝐵 ) ) ) |
| 81 | 80 | pm2.43d | ⊢ ( 𝐵 ≼ 𝑥 → ( 𝑥 ∈ ω → ¬ suc 𝑥 ≈ 𝐵 ) ) |
| 82 | 50 81 | syli | ⊢ ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → ¬ suc 𝑥 ≈ 𝐵 ) ) |
| 83 | 82 | com12 | ⊢ ( 𝑥 ∈ ω → ( 𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥 ≈ 𝐵 ) ) |
| 84 | psseq2 | ⊢ ( 𝐴 = suc 𝑥 → ( 𝐵 ⊊ 𝐴 ↔ 𝐵 ⊊ suc 𝑥 ) ) | |
| 85 | breq1 | ⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ≈ 𝐵 ↔ suc 𝑥 ≈ 𝐵 ) ) | |
| 86 | 85 | notbid | ⊢ ( 𝐴 = suc 𝑥 → ( ¬ 𝐴 ≈ 𝐵 ↔ ¬ suc 𝑥 ≈ 𝐵 ) ) |
| 87 | 84 86 | imbi12d | ⊢ ( 𝐴 = suc 𝑥 → ( ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ↔ ( 𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥 ≈ 𝐵 ) ) ) |
| 88 | 83 87 | syl5ibrcom | ⊢ ( 𝑥 ∈ ω → ( 𝐴 = suc 𝑥 → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
| 89 | 88 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 90 | 10 89 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 91 | 90 | syldbl2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |