This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of Enderton p. 134. The theorem is so-called because you can't putn + 1 pigeons inton holes (if each hole holds only one pigeon). The proof consists of phplem1 , phplem2 , nneneq , and this final piece of the proof. (Contributed by NM, 29-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | php | |- ( ( A e. _om /\ B C. A ) -> -. A ~~ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | |- (/) C_ B |
|
| 2 | sspsstr | |- ( ( (/) C_ B /\ B C. A ) -> (/) C. A ) |
|
| 3 | 1 2 | mpan | |- ( B C. A -> (/) C. A ) |
| 4 | 0pss | |- ( (/) C. A <-> A =/= (/) ) |
|
| 5 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 6 | 4 5 | bitri | |- ( (/) C. A <-> -. A = (/) ) |
| 7 | 3 6 | sylib | |- ( B C. A -> -. A = (/) ) |
| 8 | nn0suc | |- ( A e. _om -> ( A = (/) \/ E. x e. _om A = suc x ) ) |
|
| 9 | 8 | orcanai | |- ( ( A e. _om /\ -. A = (/) ) -> E. x e. _om A = suc x ) |
| 10 | 7 9 | sylan2 | |- ( ( A e. _om /\ B C. A ) -> E. x e. _om A = suc x ) |
| 11 | pssnel | |- ( B C. suc x -> E. y ( y e. suc x /\ -. y e. B ) ) |
|
| 12 | pssss | |- ( B C. suc x -> B C_ suc x ) |
|
| 13 | ssdif | |- ( B C_ suc x -> ( B \ { y } ) C_ ( suc x \ { y } ) ) |
|
| 14 | disjsn | |- ( ( B i^i { y } ) = (/) <-> -. y e. B ) |
|
| 15 | disj3 | |- ( ( B i^i { y } ) = (/) <-> B = ( B \ { y } ) ) |
|
| 16 | 14 15 | bitr3i | |- ( -. y e. B <-> B = ( B \ { y } ) ) |
| 17 | sseq1 | |- ( B = ( B \ { y } ) -> ( B C_ ( suc x \ { y } ) <-> ( B \ { y } ) C_ ( suc x \ { y } ) ) ) |
|
| 18 | 16 17 | sylbi | |- ( -. y e. B -> ( B C_ ( suc x \ { y } ) <-> ( B \ { y } ) C_ ( suc x \ { y } ) ) ) |
| 19 | 13 18 | imbitrrid | |- ( -. y e. B -> ( B C_ suc x -> B C_ ( suc x \ { y } ) ) ) |
| 20 | 12 19 | syl5 | |- ( -. y e. B -> ( B C. suc x -> B C_ ( suc x \ { y } ) ) ) |
| 21 | peano2 | |- ( x e. _om -> suc x e. _om ) |
|
| 22 | nnfi | |- ( suc x e. _om -> suc x e. Fin ) |
|
| 23 | diffi | |- ( suc x e. Fin -> ( suc x \ { y } ) e. Fin ) |
|
| 24 | ssdomfi | |- ( ( suc x \ { y } ) e. Fin -> ( B C_ ( suc x \ { y } ) -> B ~<_ ( suc x \ { y } ) ) ) |
|
| 25 | 21 22 23 24 | 4syl | |- ( x e. _om -> ( B C_ ( suc x \ { y } ) -> B ~<_ ( suc x \ { y } ) ) ) |
| 26 | 20 25 | sylan9 | |- ( ( -. y e. B /\ x e. _om ) -> ( B C. suc x -> B ~<_ ( suc x \ { y } ) ) ) |
| 27 | 26 | 3impia | |- ( ( -. y e. B /\ x e. _om /\ B C. suc x ) -> B ~<_ ( suc x \ { y } ) ) |
| 28 | 27 | 3com23 | |- ( ( -. y e. B /\ B C. suc x /\ x e. _om ) -> B ~<_ ( suc x \ { y } ) ) |
| 29 | 28 | 3expa | |- ( ( ( -. y e. B /\ B C. suc x ) /\ x e. _om ) -> B ~<_ ( suc x \ { y } ) ) |
| 30 | 29 | adantrr | |- ( ( ( -. y e. B /\ B C. suc x ) /\ ( x e. _om /\ y e. suc x ) ) -> B ~<_ ( suc x \ { y } ) ) |
| 31 | nnfi | |- ( x e. _om -> x e. Fin ) |
|
| 32 | 31 | ad2antrl | |- ( ( B ~<_ ( suc x \ { y } ) /\ ( x e. _om /\ y e. suc x ) ) -> x e. Fin ) |
| 33 | simpl | |- ( ( B ~<_ ( suc x \ { y } ) /\ ( x e. _om /\ y e. suc x ) ) -> B ~<_ ( suc x \ { y } ) ) |
|
| 34 | simpr | |- ( ( B ~<_ ( suc x \ { y } ) /\ ( x e. _om /\ y e. suc x ) ) -> ( x e. _om /\ y e. suc x ) ) |
|
| 35 | phplem1 | |- ( ( x e. _om /\ y e. suc x ) -> x ~~ ( suc x \ { y } ) ) |
|
| 36 | ensymfib | |- ( x e. Fin -> ( x ~~ ( suc x \ { y } ) <-> ( suc x \ { y } ) ~~ x ) ) |
|
| 37 | 31 36 | syl | |- ( x e. _om -> ( x ~~ ( suc x \ { y } ) <-> ( suc x \ { y } ) ~~ x ) ) |
| 38 | 37 | adantr | |- ( ( x e. _om /\ y e. suc x ) -> ( x ~~ ( suc x \ { y } ) <-> ( suc x \ { y } ) ~~ x ) ) |
| 39 | 35 38 | mpbid | |- ( ( x e. _om /\ y e. suc x ) -> ( suc x \ { y } ) ~~ x ) |
| 40 | endom | |- ( ( suc x \ { y } ) ~~ x -> ( suc x \ { y } ) ~<_ x ) |
|
| 41 | 39 40 | syl | |- ( ( x e. _om /\ y e. suc x ) -> ( suc x \ { y } ) ~<_ x ) |
| 42 | domtrfir | |- ( ( x e. Fin /\ B ~<_ ( suc x \ { y } ) /\ ( suc x \ { y } ) ~<_ x ) -> B ~<_ x ) |
|
| 43 | 41 42 | syl3an3 | |- ( ( x e. Fin /\ B ~<_ ( suc x \ { y } ) /\ ( x e. _om /\ y e. suc x ) ) -> B ~<_ x ) |
| 44 | 32 33 34 43 | syl3anc | |- ( ( B ~<_ ( suc x \ { y } ) /\ ( x e. _om /\ y e. suc x ) ) -> B ~<_ x ) |
| 45 | 30 44 | sylancom | |- ( ( ( -. y e. B /\ B C. suc x ) /\ ( x e. _om /\ y e. suc x ) ) -> B ~<_ x ) |
| 46 | 45 | exp43 | |- ( -. y e. B -> ( B C. suc x -> ( x e. _om -> ( y e. suc x -> B ~<_ x ) ) ) ) |
| 47 | 46 | com4r | |- ( y e. suc x -> ( -. y e. B -> ( B C. suc x -> ( x e. _om -> B ~<_ x ) ) ) ) |
| 48 | 47 | imp | |- ( ( y e. suc x /\ -. y e. B ) -> ( B C. suc x -> ( x e. _om -> B ~<_ x ) ) ) |
| 49 | 48 | exlimiv | |- ( E. y ( y e. suc x /\ -. y e. B ) -> ( B C. suc x -> ( x e. _om -> B ~<_ x ) ) ) |
| 50 | 11 49 | mpcom | |- ( B C. suc x -> ( x e. _om -> B ~<_ x ) ) |
| 51 | simp1 | |- ( ( x e. _om /\ suc x ~~ B /\ B ~<_ x ) -> x e. _om ) |
|
| 52 | endom | |- ( suc x ~~ B -> suc x ~<_ B ) |
|
| 53 | domtrfir | |- ( ( x e. Fin /\ suc x ~<_ B /\ B ~<_ x ) -> suc x ~<_ x ) |
|
| 54 | 52 53 | syl3an2 | |- ( ( x e. Fin /\ suc x ~~ B /\ B ~<_ x ) -> suc x ~<_ x ) |
| 55 | 31 54 | syl3an1 | |- ( ( x e. _om /\ suc x ~~ B /\ B ~<_ x ) -> suc x ~<_ x ) |
| 56 | sssucid | |- x C_ suc x |
|
| 57 | ssdomfi | |- ( suc x e. Fin -> ( x C_ suc x -> x ~<_ suc x ) ) |
|
| 58 | 22 56 57 | mpisyl | |- ( suc x e. _om -> x ~<_ suc x ) |
| 59 | 21 58 | syl | |- ( x e. _om -> x ~<_ suc x ) |
| 60 | 59 | adantr | |- ( ( x e. _om /\ suc x ~<_ x ) -> x ~<_ suc x ) |
| 61 | sbthfi | |- ( ( x e. Fin /\ suc x ~<_ x /\ x ~<_ suc x ) -> suc x ~~ x ) |
|
| 62 | 31 61 | syl3an1 | |- ( ( x e. _om /\ suc x ~<_ x /\ x ~<_ suc x ) -> suc x ~~ x ) |
| 63 | 60 62 | mpd3an3 | |- ( ( x e. _om /\ suc x ~<_ x ) -> suc x ~~ x ) |
| 64 | 51 55 63 | syl2anc | |- ( ( x e. _om /\ suc x ~~ B /\ B ~<_ x ) -> suc x ~~ x ) |
| 65 | 64 | 3com23 | |- ( ( x e. _om /\ B ~<_ x /\ suc x ~~ B ) -> suc x ~~ x ) |
| 66 | 65 | 3expia | |- ( ( x e. _om /\ B ~<_ x ) -> ( suc x ~~ B -> suc x ~~ x ) ) |
| 67 | peano2b | |- ( x e. _om <-> suc x e. _om ) |
|
| 68 | nnord | |- ( suc x e. _om -> Ord suc x ) |
|
| 69 | 67 68 | sylbi | |- ( x e. _om -> Ord suc x ) |
| 70 | vex | |- x e. _V |
|
| 71 | 70 | sucid | |- x e. suc x |
| 72 | nordeq | |- ( ( Ord suc x /\ x e. suc x ) -> suc x =/= x ) |
|
| 73 | 69 71 72 | sylancl | |- ( x e. _om -> suc x =/= x ) |
| 74 | nneneq | |- ( ( suc x e. _om /\ x e. _om ) -> ( suc x ~~ x <-> suc x = x ) ) |
|
| 75 | 67 74 | sylanb | |- ( ( x e. _om /\ x e. _om ) -> ( suc x ~~ x <-> suc x = x ) ) |
| 76 | 75 | anidms | |- ( x e. _om -> ( suc x ~~ x <-> suc x = x ) ) |
| 77 | 76 | necon3bbid | |- ( x e. _om -> ( -. suc x ~~ x <-> suc x =/= x ) ) |
| 78 | 73 77 | mpbird | |- ( x e. _om -> -. suc x ~~ x ) |
| 79 | 66 78 | nsyli | |- ( ( x e. _om /\ B ~<_ x ) -> ( x e. _om -> -. suc x ~~ B ) ) |
| 80 | 79 | expcom | |- ( B ~<_ x -> ( x e. _om -> ( x e. _om -> -. suc x ~~ B ) ) ) |
| 81 | 80 | pm2.43d | |- ( B ~<_ x -> ( x e. _om -> -. suc x ~~ B ) ) |
| 82 | 50 81 | syli | |- ( B C. suc x -> ( x e. _om -> -. suc x ~~ B ) ) |
| 83 | 82 | com12 | |- ( x e. _om -> ( B C. suc x -> -. suc x ~~ B ) ) |
| 84 | psseq2 | |- ( A = suc x -> ( B C. A <-> B C. suc x ) ) |
|
| 85 | breq1 | |- ( A = suc x -> ( A ~~ B <-> suc x ~~ B ) ) |
|
| 86 | 85 | notbid | |- ( A = suc x -> ( -. A ~~ B <-> -. suc x ~~ B ) ) |
| 87 | 84 86 | imbi12d | |- ( A = suc x -> ( ( B C. A -> -. A ~~ B ) <-> ( B C. suc x -> -. suc x ~~ B ) ) ) |
| 88 | 83 87 | syl5ibrcom | |- ( x e. _om -> ( A = suc x -> ( B C. A -> -. A ~~ B ) ) ) |
| 89 | 88 | rexlimiv | |- ( E. x e. _om A = suc x -> ( B C. A -> -. A ~~ B ) ) |
| 90 | 10 89 | syl | |- ( ( A e. _om /\ B C. A ) -> ( B C. A -> -. A ~~ B ) ) |
| 91 | 90 | syldbl2 | |- ( ( A e. _om /\ B C. A ) -> -. A ~~ B ) |