This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phplem1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ∈ ω ) | |
| 2 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 3 | enrefnn | ⊢ ( suc 𝐴 ∈ ω → suc 𝐴 ≈ suc 𝐴 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ≈ suc 𝐴 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → suc 𝐴 ≈ suc 𝐴 ) |
| 6 | simpr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐵 ∈ suc 𝐴 ) | |
| 7 | dif1ennn | ⊢ ( ( 𝐴 ∈ ω ∧ suc 𝐴 ≈ suc 𝐴 ∧ 𝐵 ∈ suc 𝐴 ) → ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) | |
| 8 | 1 5 6 7 | syl3anc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
| 9 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
| 10 | ensymfib | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ↔ ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) ) | |
| 11 | 1 9 10 | 3syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → ( 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ↔ ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) ) |
| 12 | 8 11 | mpbird | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ) |