This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth ). (Contributed by BTernaryTau, 4-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbthfi | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
| 3 | 1 | brrelex1i | ⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ∈ V ) |
| 4 | breq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 ≼ 𝑤 ↔ 𝐴 ≼ 𝑤 ) ) | |
| 5 | breq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑤 ≼ 𝑧 ↔ 𝑤 ≼ 𝐴 ) ) | |
| 6 | 4 5 | 3anbi23d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑤 ∈ Fin ∧ 𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧 ) ↔ ( 𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴 ) ) ) |
| 7 | breq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤 ) ) | |
| 8 | 6 7 | imbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( ( 𝑤 ∈ Fin ∧ 𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧 ) → 𝑧 ≈ 𝑤 ) ↔ ( ( 𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴 ) → 𝐴 ≈ 𝑤 ) ) ) |
| 9 | eleq1 | ⊢ ( 𝑤 = 𝐵 → ( 𝑤 ∈ Fin ↔ 𝐵 ∈ Fin ) ) | |
| 10 | breq2 | ⊢ ( 𝑤 = 𝐵 → ( 𝐴 ≼ 𝑤 ↔ 𝐴 ≼ 𝐵 ) ) | |
| 11 | breq1 | ⊢ ( 𝑤 = 𝐵 → ( 𝑤 ≼ 𝐴 ↔ 𝐵 ≼ 𝐴 ) ) | |
| 12 | 9 10 11 | 3anbi123d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴 ) ↔ ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ) ) |
| 13 | breq2 | ⊢ ( 𝑤 = 𝐵 → ( 𝐴 ≈ 𝑤 ↔ 𝐴 ≈ 𝐵 ) ) | |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑤 = 𝐵 → ( ( ( 𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴 ) → 𝐴 ≈ 𝑤 ) ↔ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) ) ) |
| 15 | vex | ⊢ 𝑧 ∈ V | |
| 16 | sseq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊆ 𝑧 ↔ 𝑥 ⊆ 𝑧 ) ) | |
| 17 | imaeq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ 𝑥 ) ) | |
| 18 | 17 | difeq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) = ( 𝑤 ∖ ( 𝑓 “ 𝑥 ) ) ) |
| 19 | 18 | imaeq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) = ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑥 ) ) ) ) |
| 20 | difeq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑧 ∖ 𝑦 ) = ( 𝑧 ∖ 𝑥 ) ) | |
| 21 | 19 20 | sseq12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ↔ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝑧 ∖ 𝑥 ) ) ) |
| 22 | 16 21 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) ↔ ( 𝑥 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝑧 ∖ 𝑥 ) ) ) ) |
| 23 | 22 | cbvabv | ⊢ { 𝑦 ∣ ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) } = { 𝑥 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝑧 ∖ 𝑥 ) ) } |
| 24 | eqid | ⊢ ( ( 𝑓 ↾ ∪ { 𝑦 ∣ ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) } ) ∪ ( ◡ 𝑔 ↾ ( 𝑧 ∖ ∪ { 𝑦 ∣ ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) } ) ) ) = ( ( 𝑓 ↾ ∪ { 𝑦 ∣ ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) } ) ∪ ( ◡ 𝑔 ↾ ( 𝑧 ∖ ∪ { 𝑦 ∣ ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) } ) ) ) | |
| 25 | vex | ⊢ 𝑤 ∈ V | |
| 26 | 15 23 24 25 | sbthfilem | ⊢ ( ( 𝑤 ∈ Fin ∧ 𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧 ) → 𝑧 ≈ 𝑤 ) |
| 27 | 8 14 26 | vtocl2g | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) ) |
| 28 | 2 3 27 | syl2an | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) ) |
| 29 | 28 | 3adant1 | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) ) |
| 30 | 29 | pm2.43i | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) |