This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998) (Revised by Mario Carneiro, 24-Jun-2015) Avoid ax-pow . (Revised by BTernaryTau, 4-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | phplem2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | phplem2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phplem2.1 | ⊢ 𝐴 ∈ V | |
| 2 | bren | ⊢ ( suc 𝐴 ≈ suc 𝐵 ↔ ∃ 𝑓 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) | |
| 3 | f1of1 | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → 𝑓 : suc 𝐴 –1-1→ suc 𝐵 ) | |
| 4 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
| 5 | sssucid | ⊢ 𝐴 ⊆ suc 𝐴 | |
| 6 | f1imaenfi | ⊢ ( ( 𝑓 : suc 𝐴 –1-1→ suc 𝐵 ∧ 𝐴 ⊆ suc 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑓 “ 𝐴 ) ≈ 𝐴 ) | |
| 7 | 5 6 | mp3an2 | ⊢ ( ( 𝑓 : suc 𝐴 –1-1→ suc 𝐵 ∧ 𝐴 ∈ Fin ) → ( 𝑓 “ 𝐴 ) ≈ 𝐴 ) |
| 8 | 3 4 7 | syl2anr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) → ( 𝑓 “ 𝐴 ) ≈ 𝐴 ) |
| 9 | ensymfib | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ ( 𝑓 “ 𝐴 ) ↔ ( 𝑓 “ 𝐴 ) ≈ 𝐴 ) ) | |
| 10 | 4 9 | syl | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ≈ ( 𝑓 “ 𝐴 ) ↔ ( 𝑓 “ 𝐴 ) ≈ 𝐴 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) → ( 𝐴 ≈ ( 𝑓 “ 𝐴 ) ↔ ( 𝑓 “ 𝐴 ) ≈ 𝐴 ) ) |
| 12 | 8 11 | mpbird | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) → 𝐴 ≈ ( 𝑓 “ 𝐴 ) ) |
| 13 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 14 | orddif | ⊢ ( Ord 𝐴 → 𝐴 = ( suc 𝐴 ∖ { 𝐴 } ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐴 ∈ ω → 𝐴 = ( suc 𝐴 ∖ { 𝐴 } ) ) |
| 16 | 15 | imaeq2d | ⊢ ( 𝐴 ∈ ω → ( 𝑓 “ 𝐴 ) = ( 𝑓 “ ( suc 𝐴 ∖ { 𝐴 } ) ) ) |
| 17 | f1ofn | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → 𝑓 Fn suc 𝐴 ) | |
| 18 | 1 | sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| 19 | fnsnfv | ⊢ ( ( 𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴 ) → { ( 𝑓 ‘ 𝐴 ) } = ( 𝑓 “ { 𝐴 } ) ) | |
| 20 | 17 18 19 | sylancl | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → { ( 𝑓 ‘ 𝐴 ) } = ( 𝑓 “ { 𝐴 } ) ) |
| 21 | 20 | difeq2d | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → ( ( 𝑓 “ suc 𝐴 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) = ( ( 𝑓 “ suc 𝐴 ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 22 | imadmrn | ⊢ ( 𝑓 “ dom 𝑓 ) = ran 𝑓 | |
| 23 | 22 | eqcomi | ⊢ ran 𝑓 = ( 𝑓 “ dom 𝑓 ) |
| 24 | f1ofo | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → 𝑓 : suc 𝐴 –onto→ suc 𝐵 ) | |
| 25 | forn | ⊢ ( 𝑓 : suc 𝐴 –onto→ suc 𝐵 → ran 𝑓 = suc 𝐵 ) | |
| 26 | 24 25 | syl | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → ran 𝑓 = suc 𝐵 ) |
| 27 | f1odm | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → dom 𝑓 = suc 𝐴 ) | |
| 28 | 27 | imaeq2d | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → ( 𝑓 “ dom 𝑓 ) = ( 𝑓 “ suc 𝐴 ) ) |
| 29 | 23 26 28 | 3eqtr3a | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → suc 𝐵 = ( 𝑓 “ suc 𝐴 ) ) |
| 30 | 29 | difeq1d | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) = ( ( 𝑓 “ suc 𝐴 ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) |
| 31 | dff1o3 | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ↔ ( 𝑓 : suc 𝐴 –onto→ suc 𝐵 ∧ Fun ◡ 𝑓 ) ) | |
| 32 | imadif | ⊢ ( Fun ◡ 𝑓 → ( 𝑓 “ ( suc 𝐴 ∖ { 𝐴 } ) ) = ( ( 𝑓 “ suc 𝐴 ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) | |
| 33 | 31 32 | simplbiim | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → ( 𝑓 “ ( suc 𝐴 ∖ { 𝐴 } ) ) = ( ( 𝑓 “ suc 𝐴 ) ∖ ( 𝑓 “ { 𝐴 } ) ) ) |
| 34 | 21 30 33 | 3eqtr4rd | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → ( 𝑓 “ ( suc 𝐴 ∖ { 𝐴 } ) ) = ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) |
| 35 | 16 34 | sylan9eq | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) → ( 𝑓 “ 𝐴 ) = ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) |
| 36 | 12 35 | breqtrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) → 𝐴 ≈ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) |
| 37 | fnfvelrn | ⊢ ( ( 𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴 ) → ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑓 ) | |
| 38 | 17 18 37 | sylancl | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑓 ) |
| 39 | 25 | eleq2d | ⊢ ( 𝑓 : suc 𝐴 –onto→ suc 𝐵 → ( ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑓 ↔ ( 𝑓 ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
| 40 | 24 39 | syl | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → ( ( 𝑓 ‘ 𝐴 ) ∈ ran 𝑓 ↔ ( 𝑓 ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
| 41 | 38 40 | mpbid | ⊢ ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → ( 𝑓 ‘ 𝐴 ) ∈ suc 𝐵 ) |
| 42 | phplem1 | ⊢ ( ( 𝐵 ∈ ω ∧ ( 𝑓 ‘ 𝐴 ) ∈ suc 𝐵 ) → 𝐵 ≈ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) | |
| 43 | 41 42 | sylan2 | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) → 𝐵 ≈ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) |
| 44 | nnfi | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ Fin ) | |
| 45 | ensymfib | ⊢ ( 𝐵 ∈ Fin → ( 𝐵 ≈ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ↔ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐵 ) ) | |
| 46 | 44 45 | syl | ⊢ ( 𝐵 ∈ ω → ( 𝐵 ≈ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ↔ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐵 ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) → ( 𝐵 ≈ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ↔ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐵 ) ) |
| 48 | 43 47 | mpbid | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) → ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐵 ) |
| 49 | entrfil | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ∧ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐵 ) → 𝐴 ≈ 𝐵 ) | |
| 50 | 4 49 | syl3an1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≈ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ∧ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
| 51 | 48 50 | syl3an3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≈ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ∧ ( 𝐵 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) ) → 𝐴 ≈ 𝐵 ) |
| 52 | 51 | 3expa | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐴 ≈ ( suc 𝐵 ∖ { ( 𝑓 ‘ 𝐴 ) } ) ) ∧ ( 𝐵 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) ) → 𝐴 ≈ 𝐵 ) |
| 53 | 36 52 | syldanl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) ∧ ( 𝐵 ∈ ω ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) ) → 𝐴 ≈ 𝐵 ) |
| 54 | 53 | anandirs | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 ) → 𝐴 ≈ 𝐵 ) |
| 55 | 54 | ex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| 56 | 55 | exlimdv | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑓 𝑓 : suc 𝐴 –1-1-onto→ suc 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| 57 | 2 56 | biimtrid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵 ) ) |