This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlssphl.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| phlssphl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | phlssphl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ PreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlssphl.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | phlssphl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) | |
| 4 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( +g ‘ 𝑋 ) = ( +g ‘ 𝑋 ) ) | |
| 5 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑋 ) ) | |
| 6 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑋 ) ) | |
| 7 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 9 | eqid | ⊢ ( 0g ‘ 𝑋 ) = ( 0g ‘ 𝑋 ) | |
| 10 | 1 8 9 2 | lss0v | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 11 | 7 10 | sylan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 12 | 11 | eqcomd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑋 ) ) |
| 13 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) ) | |
| 14 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | |
| 15 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( +g ‘ ( Scalar ‘ 𝑋 ) ) = ( +g ‘ ( Scalar ‘ 𝑋 ) ) ) | |
| 16 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( .r ‘ ( Scalar ‘ 𝑋 ) ) = ( .r ‘ ( Scalar ‘ 𝑋 ) ) ) | |
| 17 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ) | |
| 18 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ) | |
| 19 | phllvec | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) | |
| 20 | 1 2 | lsslvec | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LVec ) |
| 21 | 19 20 | sylan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LVec ) |
| 22 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 23 | 1 22 | resssca | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 24 | 23 | eqcomd | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) ) |
| 26 | 22 | phlsrng | ⊢ ( 𝑊 ∈ PreHil → ( Scalar ‘ 𝑊 ) ∈ *-Ring ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ *-Ring ) |
| 28 | 25 27 | eqeltrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ *-Ring ) |
| 29 | simpl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ PreHil ) | |
| 30 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 31 | 1 30 | ressbasss | ⊢ ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) |
| 32 | 31 | sseli | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑋 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 33 | 31 | sseli | ⊢ ( 𝑦 ∈ ( Base ‘ 𝑋 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 34 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 35 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 36 | 22 34 30 35 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 37 | 29 32 33 36 | syl3an | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 38 | 24 | fveq2d | ⊢ ( 𝑈 ∈ 𝑆 → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 39 | 38 | eleq2d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 40 | 39 | adantl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 41 | 40 | 3ad2ant1 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 42 | 37 41 | mpbird | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 43 | eqid | ⊢ ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑋 ) | |
| 44 | 1 34 43 | ssipeq | ⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑊 ) ) |
| 45 | 44 | oveqd | ⊢ ( 𝑈 ∈ 𝑆 → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 46 | 45 | eleq1d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 47 | 46 | adantl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 48 | 47 | 3ad2ant1 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) |
| 49 | 42 48 | mpbird | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 50 | 29 | 3ad2ant1 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ PreHil ) |
| 51 | 7 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ LMod ) |
| 52 | 51 | 3ad2ant1 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ LMod ) |
| 53 | 25 | fveq2d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 54 | 53 | eleq2d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↔ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 55 | 54 | biimpa | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 56 | 55 | 3adant3 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 57 | 32 | 3ad2ant1 | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 58 | 57 | 3ad2ant3 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 59 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 60 | 30 22 59 35 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ) |
| 61 | 52 56 58 60 | syl3anc | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ) |
| 62 | 33 | 3ad2ant2 | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 63 | 62 | 3ad2ant3 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 64 | 31 | sseli | ⊢ ( 𝑧 ∈ ( Base ‘ 𝑋 ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 65 | 64 | 3ad2ant3 | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 66 | 65 | 3ad2ant3 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 67 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 68 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 69 | 22 34 30 67 68 | ipdir | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 70 | 50 61 63 66 69 | syl13anc | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 71 | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 72 | 22 34 30 35 59 71 | ipass | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 73 | 50 56 58 66 72 | syl13anc | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 74 | 73 | oveq1d | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 75 | 70 74 | eqtrd | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 76 | 1 67 | ressplusg | ⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
| 77 | 76 | eqcomd | ⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ 𝑋 ) = ( +g ‘ 𝑊 ) ) |
| 78 | 1 59 | ressvsca | ⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 79 | 78 | eqcomd | ⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 80 | 79 | oveqd | ⊢ ( 𝑈 ∈ 𝑆 → ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) = ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
| 81 | eqidd | ⊢ ( 𝑈 ∈ 𝑆 → 𝑦 = 𝑦 ) | |
| 82 | 77 80 81 | oveq123d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) |
| 83 | eqidd | ⊢ ( 𝑈 ∈ 𝑆 → 𝑧 = 𝑧 ) | |
| 84 | 44 82 83 | oveq123d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 85 | 24 | fveq2d | ⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ ( Scalar ‘ 𝑋 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 86 | 24 | fveq2d | ⊢ ( 𝑈 ∈ 𝑆 → ( .r ‘ ( Scalar ‘ 𝑋 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 87 | eqidd | ⊢ ( 𝑈 ∈ 𝑆 → 𝑞 = 𝑞 ) | |
| 88 | 44 | oveqd | ⊢ ( 𝑈 ∈ 𝑆 → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 89 | 86 87 88 | oveq123d | ⊢ ( 𝑈 ∈ 𝑆 → ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 90 | 44 | oveqd | ⊢ ( 𝑈 ∈ 𝑆 → ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 91 | 85 89 90 | oveq123d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 92 | 84 91 | eqeq12d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 93 | 92 | adantl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 94 | 93 | 3ad2ant1 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 95 | 75 94 | mpbird | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ∧ 𝑧 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑋 ) 𝑥 ) ( +g ‘ 𝑋 ) 𝑦 ) ( ·𝑖 ‘ 𝑋 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑋 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑧 ) ) ) |
| 96 | 44 | adantl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑊 ) ) |
| 97 | 96 | oveqdr | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 98 | 24 | fveq2d | ⊢ ( 𝑈 ∈ 𝑆 → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 99 | 98 | adantl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 100 | 99 | adantr | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( 0g ‘ ( Scalar ‘ 𝑋 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 101 | 97 100 | eqeq12d | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 102 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 103 | 22 34 30 102 8 | ipeq0 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 104 | 29 32 103 | syl2an | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 105 | 104 | biimpd | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 106 | 101 105 | sylbid | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
| 107 | 106 | 3impia | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑋 ) ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) |
| 108 | 24 | fveq2d | ⊢ ( 𝑈 ∈ 𝑆 → ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 109 | 108 | fveq1d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 110 | 109 | adantl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 111 | 110 | 3ad2ant1 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 112 | eqid | ⊢ ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) | |
| 113 | 22 34 30 112 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 114 | 29 32 33 113 | syl3an | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 115 | 111 114 | eqtrd | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 116 | 45 | fveq2d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 117 | 44 | oveqd | ⊢ ( 𝑈 ∈ 𝑆 → ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
| 118 | 116 117 | eqeq12d | ⊢ ( 𝑈 ∈ 𝑆 → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 119 | 118 | adantl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 120 | 119 | 3ad2ant1 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
| 121 | 115 120 | mpbird | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑋 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑋 ) 𝑥 ) ) |
| 122 | 3 4 5 6 12 13 14 15 16 17 18 21 28 49 95 107 121 | isphld | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ PreHil ) |