This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lss0v.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| lss0v.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lss0v.z | ⊢ 𝑍 = ( 0g ‘ 𝑋 ) | ||
| lss0v.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lss0v | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → 𝑍 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lss0v.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | lss0v.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lss0v.z | ⊢ 𝑍 = ( 0g ‘ 𝑋 ) | |
| 4 | lss0v.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 5 | 0ss | ⊢ ∅ ⊆ 𝑈 | |
| 6 | eqid | ⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( LSpan ‘ 𝑋 ) = ( LSpan ‘ 𝑋 ) | |
| 8 | 1 6 7 4 | lsslsp | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ ∅ ⊆ 𝑈 ) → ( ( LSpan ‘ 𝑋 ) ‘ ∅ ) = ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) |
| 9 | 5 8 | mp3an3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → ( ( LSpan ‘ 𝑋 ) ‘ ∅ ) = ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) |
| 10 | 1 4 | lsslmod | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → 𝑋 ∈ LMod ) |
| 11 | 3 7 | lsp0 | ⊢ ( 𝑋 ∈ LMod → ( ( LSpan ‘ 𝑋 ) ‘ ∅ ) = { 𝑍 } ) |
| 12 | 10 11 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → ( ( LSpan ‘ 𝑋 ) ‘ ∅ ) = { 𝑍 } ) |
| 13 | 2 6 | lsp0 | ⊢ ( 𝑊 ∈ LMod → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
| 15 | 9 12 14 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → { 𝑍 } = { 0 } ) |
| 16 | 15 | unieqd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → ∪ { 𝑍 } = ∪ { 0 } ) |
| 17 | 3 | fvexi | ⊢ 𝑍 ∈ V |
| 18 | 17 | unisn | ⊢ ∪ { 𝑍 } = 𝑍 |
| 19 | 2 | fvexi | ⊢ 0 ∈ V |
| 20 | 19 | unisn | ⊢ ∪ { 0 } = 0 |
| 21 | 16 18 20 | 3eqtr3g | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → 𝑍 = 0 ) |