This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector subspace is a vector space. (Contributed by NM, 14-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsslvec.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| lsslvec.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lsslvec | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsslvec.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | lsslvec.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 4 | 1 2 | lsslmod | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 7 | 1 6 | resssca | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 9 | 6 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 11 | 8 10 | eqeltrrd | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ DivRing ) |
| 12 | eqid | ⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) | |
| 13 | 12 | islvec | ⊢ ( 𝑋 ∈ LVec ↔ ( 𝑋 ∈ LMod ∧ ( Scalar ‘ 𝑋 ) ∈ DivRing ) ) |
| 14 | 5 11 13 | sylanbrc | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LVec ) |