This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product (right-distributivity). Equation I3 of Ponnusamy p. 362. (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ipdir.g | ⊢ + = ( +g ‘ 𝑊 ) | ||
| ipdir.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | ||
| Assertion | ipdir | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) , 𝐶 ) = ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ipdir.g | ⊢ + = ( +g ‘ 𝑊 ) | |
| 5 | ipdir.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | |
| 6 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) | |
| 7 | 1 2 3 6 | phllmhm | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 8 | 7 | 3ad2antr3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 9 | lmghm | ⊢ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 GrpHom ( ringLMod ‘ 𝐹 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 GrpHom ( ringLMod ‘ 𝐹 ) ) ) |
| 11 | simpr1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) | |
| 12 | simpr2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) | |
| 13 | rlmplusg | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ ( ringLMod ‘ 𝐹 ) ) | |
| 14 | 5 13 | eqtri | ⊢ ⨣ = ( +g ‘ ( ringLMod ‘ 𝐹 ) ) |
| 15 | 3 4 14 | ghmlin | ⊢ ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 GrpHom ( ringLMod ‘ 𝐹 ) ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐴 ) ⨣ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) ) |
| 16 | 10 11 12 15 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐴 ) ⨣ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) ) |
| 17 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 18 | 3 4 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
| 19 | 17 18 | syl3an1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
| 20 | 19 | 3adant3r3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
| 21 | oveq1 | ⊢ ( 𝑥 = ( 𝐴 + 𝐵 ) → ( 𝑥 , 𝐶 ) = ( ( 𝐴 + 𝐵 ) , 𝐶 ) ) | |
| 22 | ovex | ⊢ ( 𝑥 , 𝐶 ) ∈ V | |
| 23 | 21 6 22 | fvmpt3i | ⊢ ( ( 𝐴 + 𝐵 ) ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) , 𝐶 ) ) |
| 24 | 20 23 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) , 𝐶 ) ) |
| 25 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 , 𝐶 ) = ( 𝐴 , 𝐶 ) ) | |
| 26 | 25 6 22 | fvmpt3i | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐴 ) = ( 𝐴 , 𝐶 ) ) |
| 27 | 11 26 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐴 ) = ( 𝐴 , 𝐶 ) ) |
| 28 | oveq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 , 𝐶 ) = ( 𝐵 , 𝐶 ) ) | |
| 29 | 28 6 22 | fvmpt3i | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) = ( 𝐵 , 𝐶 ) ) |
| 30 | 12 29 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) = ( 𝐵 , 𝐶 ) ) |
| 31 | 27 30 | oveq12d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐴 ) ⨣ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) = ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |
| 32 | 16 24 31 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) , 𝐶 ) = ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |