This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| Assertion | phlsrng | ⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 7 | 2 1 3 4 5 6 | isphl | ⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ 𝐹 ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
| 8 | 7 | simp2bi | ⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |