This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcz | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ∈ ℤ ↔ ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcge0 | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → 0 ≤ ( 𝑝 pCnt 𝐴 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ ) → 0 ≤ ( 𝑝 pCnt 𝐴 ) ) |
| 3 | 2 | ralrimiva | ⊢ ( 𝐴 ∈ ℤ → ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) ) |
| 4 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 5 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 6 | dvds0 | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∥ 0 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∥ 0 ) |
| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 = 0 ) → 𝑦 ∥ 0 ) |
| 9 | simpr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 = 0 ) → 𝑥 = 0 ) | |
| 10 | 8 9 | breqtrrd | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 = 0 ) → 𝑦 ∥ 𝑥 ) |
| 11 | 10 | a1d | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 = 0 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) → 𝑦 ∥ 𝑥 ) ) |
| 12 | simpr | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) | |
| 13 | simplll | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑥 ∈ ℤ ) | |
| 14 | simplr | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑥 ≠ 0 ) | |
| 15 | simpllr | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → 𝑦 ∈ ℕ ) | |
| 16 | pcdiv | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑝 pCnt 𝑥 ) − ( 𝑝 pCnt 𝑦 ) ) ) | |
| 17 | 12 13 14 15 16 | syl121anc | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑝 pCnt 𝑥 ) − ( 𝑝 pCnt 𝑦 ) ) ) |
| 18 | 17 | breq2d | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ↔ 0 ≤ ( ( 𝑝 pCnt 𝑥 ) − ( 𝑝 pCnt 𝑦 ) ) ) ) |
| 19 | pczcl | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑝 pCnt 𝑥 ) ∈ ℕ0 ) | |
| 20 | 12 13 14 19 | syl12anc | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑥 ) ∈ ℕ0 ) |
| 21 | 20 | nn0red | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑥 ) ∈ ℝ ) |
| 22 | 12 15 | pccld | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑦 ) ∈ ℕ0 ) |
| 23 | 22 | nn0red | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑦 ) ∈ ℝ ) |
| 24 | 21 23 | subge0d | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( ( 𝑝 pCnt 𝑥 ) − ( 𝑝 pCnt 𝑦 ) ) ↔ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
| 25 | 18 24 | bitrd | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ↔ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
| 26 | 25 | ralbidva | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
| 27 | id | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℤ ) | |
| 28 | pc2dvds | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 ∥ 𝑥 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) | |
| 29 | 5 27 28 | syl2anr | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ∥ 𝑥 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( 𝑦 ∥ 𝑥 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑦 ) ≤ ( 𝑝 pCnt 𝑥 ) ) ) |
| 31 | 26 30 | bitr4d | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ↔ 𝑦 ∥ 𝑥 ) ) |
| 32 | 31 | biimpd | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ≠ 0 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) → 𝑦 ∥ 𝑥 ) ) |
| 33 | 11 32 | pm2.61dane | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) → 𝑦 ∥ 𝑥 ) ) |
| 34 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 35 | simpl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → 𝑥 ∈ ℤ ) | |
| 36 | dvdsval2 | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑥 ∈ ℤ ) → ( 𝑦 ∥ 𝑥 ↔ ( 𝑥 / 𝑦 ) ∈ ℤ ) ) | |
| 37 | 5 34 35 36 | syl2an23an | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ∥ 𝑥 ↔ ( 𝑥 / 𝑦 ) ∈ ℤ ) ) |
| 38 | 33 37 | sylibd | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) → ( 𝑥 / 𝑦 ) ∈ ℤ ) ) |
| 39 | oveq2 | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ) | |
| 40 | 39 | breq2d | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 0 ≤ ( 𝑝 pCnt 𝐴 ) ↔ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ) ) |
| 41 | 40 | ralbidv | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) ) ) |
| 42 | eleq1 | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ∈ ℤ ↔ ( 𝑥 / 𝑦 ) ∈ ℤ ) ) | |
| 43 | 41 42 | imbi12d | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) → 𝐴 ∈ ℤ ) ↔ ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt ( 𝑥 / 𝑦 ) ) → ( 𝑥 / 𝑦 ) ∈ ℤ ) ) ) |
| 44 | 38 43 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) → 𝐴 ∈ ℤ ) ) ) |
| 45 | 44 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) → 𝐴 ∈ ℤ ) ) |
| 46 | 4 45 | sylbi | ⊢ ( 𝐴 ∈ ℚ → ( ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) → 𝐴 ∈ ℤ ) ) |
| 47 | 3 46 | impbid2 | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ∈ ℤ ↔ ∀ 𝑝 ∈ ℙ 0 ≤ ( 𝑝 pCnt 𝐴 ) ) ) |