This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcval.1 | |- S = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
|
| pcval.2 | |- T = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
||
| Assertion | pceu | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcval.1 | |- S = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
|
| 2 | pcval.2 | |- T = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
|
| 3 | simprl | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> N e. QQ ) |
|
| 4 | elq | |- ( N e. QQ <-> E. x e. ZZ E. y e. NN N = ( x / y ) ) |
|
| 5 | 3 4 | sylib | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E. x e. ZZ E. y e. NN N = ( x / y ) ) |
| 6 | ovex | |- ( S - T ) e. _V |
|
| 7 | biidd | |- ( z = ( S - T ) -> ( N = ( x / y ) <-> N = ( x / y ) ) ) |
|
| 8 | 6 7 | ceqsexv | |- ( E. z ( z = ( S - T ) /\ N = ( x / y ) ) <-> N = ( x / y ) ) |
| 9 | exancom | |- ( E. z ( z = ( S - T ) /\ N = ( x / y ) ) <-> E. z ( N = ( x / y ) /\ z = ( S - T ) ) ) |
|
| 10 | 8 9 | bitr3i | |- ( N = ( x / y ) <-> E. z ( N = ( x / y ) /\ z = ( S - T ) ) ) |
| 11 | 10 | rexbii | |- ( E. y e. NN N = ( x / y ) <-> E. y e. NN E. z ( N = ( x / y ) /\ z = ( S - T ) ) ) |
| 12 | rexcom4 | |- ( E. y e. NN E. z ( N = ( x / y ) /\ z = ( S - T ) ) <-> E. z E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
|
| 13 | 11 12 | bitri | |- ( E. y e. NN N = ( x / y ) <-> E. z E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
| 14 | 13 | rexbii | |- ( E. x e. ZZ E. y e. NN N = ( x / y ) <-> E. x e. ZZ E. z E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
| 15 | rexcom4 | |- ( E. x e. ZZ E. z E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) <-> E. z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
|
| 16 | 14 15 | bitri | |- ( E. x e. ZZ E. y e. NN N = ( x / y ) <-> E. z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
| 17 | 5 16 | sylib | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E. z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |
| 18 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) |
|
| 19 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) |
|
| 20 | simp11l | |- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> P e. Prime ) |
|
| 21 | simp11r | |- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> N =/= 0 ) |
|
| 22 | simp12 | |- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> ( x e. ZZ /\ y e. NN ) ) |
|
| 23 | simp13l | |- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> N = ( x / y ) ) |
|
| 24 | simp2 | |- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> ( s e. ZZ /\ t e. NN ) ) |
|
| 25 | simp3l | |- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> N = ( s / t ) ) |
|
| 26 | 1 2 18 19 20 21 22 23 24 25 | pceulem | |- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> ( S - T ) = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) |
| 27 | simp13r | |- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> z = ( S - T ) ) |
|
| 28 | simp3r | |- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) |
|
| 29 | 26 27 28 | 3eqtr4d | |- ( ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) /\ ( s e. ZZ /\ t e. NN ) /\ ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> z = w ) |
| 30 | 29 | 3exp | |- ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) -> ( ( s e. ZZ /\ t e. NN ) -> ( ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) -> z = w ) ) ) |
| 31 | 30 | rexlimdvv | |- ( ( ( P e. Prime /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. NN ) /\ ( N = ( x / y ) /\ z = ( S - T ) ) ) -> ( E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) -> z = w ) ) |
| 32 | 31 | 3exp | |- ( ( P e. Prime /\ N =/= 0 ) -> ( ( x e. ZZ /\ y e. NN ) -> ( ( N = ( x / y ) /\ z = ( S - T ) ) -> ( E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) -> z = w ) ) ) ) |
| 33 | 32 | adantrl | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( ( x e. ZZ /\ y e. NN ) -> ( ( N = ( x / y ) /\ z = ( S - T ) ) -> ( E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) -> z = w ) ) ) ) |
| 34 | 33 | rexlimdvv | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) -> ( E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) -> z = w ) ) ) |
| 35 | 34 | impd | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) /\ E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> z = w ) ) |
| 36 | 35 | alrimivv | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> A. z A. w ( ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) /\ E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> z = w ) ) |
| 37 | eqeq1 | |- ( z = w -> ( z = ( S - T ) <-> w = ( S - T ) ) ) |
|
| 38 | 37 | anbi2d | |- ( z = w -> ( ( N = ( x / y ) /\ z = ( S - T ) ) <-> ( N = ( x / y ) /\ w = ( S - T ) ) ) ) |
| 39 | 38 | 2rexbidv | |- ( z = w -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) <-> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ w = ( S - T ) ) ) ) |
| 40 | oveq1 | |- ( x = s -> ( x / y ) = ( s / y ) ) |
|
| 41 | 40 | eqeq2d | |- ( x = s -> ( N = ( x / y ) <-> N = ( s / y ) ) ) |
| 42 | breq2 | |- ( x = s -> ( ( P ^ n ) || x <-> ( P ^ n ) || s ) ) |
|
| 43 | 42 | rabbidv | |- ( x = s -> { n e. NN0 | ( P ^ n ) || x } = { n e. NN0 | ( P ^ n ) || s } ) |
| 44 | 43 | supeq1d | |- ( x = s -> sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) ) |
| 45 | 1 44 | eqtrid | |- ( x = s -> S = sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) ) |
| 46 | 45 | oveq1d | |- ( x = s -> ( S - T ) = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) |
| 47 | 46 | eqeq2d | |- ( x = s -> ( w = ( S - T ) <-> w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) ) |
| 48 | 41 47 | anbi12d | |- ( x = s -> ( ( N = ( x / y ) /\ w = ( S - T ) ) <-> ( N = ( s / y ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) ) ) |
| 49 | 48 | rexbidv | |- ( x = s -> ( E. y e. NN ( N = ( x / y ) /\ w = ( S - T ) ) <-> E. y e. NN ( N = ( s / y ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) ) ) |
| 50 | oveq2 | |- ( y = t -> ( s / y ) = ( s / t ) ) |
|
| 51 | 50 | eqeq2d | |- ( y = t -> ( N = ( s / y ) <-> N = ( s / t ) ) ) |
| 52 | breq2 | |- ( y = t -> ( ( P ^ n ) || y <-> ( P ^ n ) || t ) ) |
|
| 53 | 52 | rabbidv | |- ( y = t -> { n e. NN0 | ( P ^ n ) || y } = { n e. NN0 | ( P ^ n ) || t } ) |
| 54 | 53 | supeq1d | |- ( y = t -> sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) |
| 55 | 2 54 | eqtrid | |- ( y = t -> T = sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) |
| 56 | 55 | oveq2d | |- ( y = t -> ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) |
| 57 | 56 | eqeq2d | |- ( y = t -> ( w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) <-> w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) |
| 58 | 51 57 | anbi12d | |- ( y = t -> ( ( N = ( s / y ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) <-> ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) ) |
| 59 | 58 | cbvrexvw | |- ( E. y e. NN ( N = ( s / y ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - T ) ) <-> E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) |
| 60 | 49 59 | bitrdi | |- ( x = s -> ( E. y e. NN ( N = ( x / y ) /\ w = ( S - T ) ) <-> E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) ) |
| 61 | 60 | cbvrexvw | |- ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ w = ( S - T ) ) <-> E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) |
| 62 | 39 61 | bitrdi | |- ( z = w -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) <-> E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) ) |
| 63 | 62 | eu4 | |- ( E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) <-> ( E. z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) /\ A. z A. w ( ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) /\ E. s e. ZZ E. t e. NN ( N = ( s / t ) /\ w = ( sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) ) ) ) -> z = w ) ) ) |
| 64 | 17 36 63 | sylanbrc | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) |