This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pceu . (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcval.1 | ⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) | |
| pcval.2 | ⊢ 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) | ||
| pceu.3 | ⊢ 𝑈 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) | ||
| pceu.4 | ⊢ 𝑉 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) | ||
| pceu.5 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| pceu.6 | ⊢ ( 𝜑 → 𝑁 ≠ 0 ) | ||
| pceu.7 | ⊢ ( 𝜑 → ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) | ||
| pceu.8 | ⊢ ( 𝜑 → 𝑁 = ( 𝑥 / 𝑦 ) ) | ||
| pceu.9 | ⊢ ( 𝜑 → ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ) | ||
| pceu.10 | ⊢ ( 𝜑 → 𝑁 = ( 𝑠 / 𝑡 ) ) | ||
| Assertion | pceulem | ⊢ ( 𝜑 → ( 𝑆 − 𝑇 ) = ( 𝑈 − 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcval.1 | ⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) | |
| 2 | pcval.2 | ⊢ 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) | |
| 3 | pceu.3 | ⊢ 𝑈 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) | |
| 4 | pceu.4 | ⊢ 𝑉 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) | |
| 5 | pceu.5 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 6 | pceu.6 | ⊢ ( 𝜑 → 𝑁 ≠ 0 ) | |
| 7 | pceu.7 | ⊢ ( 𝜑 → ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) | |
| 8 | pceu.8 | ⊢ ( 𝜑 → 𝑁 = ( 𝑥 / 𝑦 ) ) | |
| 9 | pceu.9 | ⊢ ( 𝜑 → ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ) | |
| 10 | pceu.10 | ⊢ ( 𝜑 → 𝑁 = ( 𝑠 / 𝑡 ) ) | |
| 11 | 7 | simprd | ⊢ ( 𝜑 → 𝑦 ∈ ℕ ) |
| 12 | 11 | nncnd | ⊢ ( 𝜑 → 𝑦 ∈ ℂ ) |
| 13 | 9 | simpld | ⊢ ( 𝜑 → 𝑠 ∈ ℤ ) |
| 14 | 13 | zcnd | ⊢ ( 𝜑 → 𝑠 ∈ ℂ ) |
| 15 | 12 14 | mulcomd | ⊢ ( 𝜑 → ( 𝑦 · 𝑠 ) = ( 𝑠 · 𝑦 ) ) |
| 16 | 10 8 | eqtr3d | ⊢ ( 𝜑 → ( 𝑠 / 𝑡 ) = ( 𝑥 / 𝑦 ) ) |
| 17 | 9 | simprd | ⊢ ( 𝜑 → 𝑡 ∈ ℕ ) |
| 18 | 17 | nncnd | ⊢ ( 𝜑 → 𝑡 ∈ ℂ ) |
| 19 | 7 | simpld | ⊢ ( 𝜑 → 𝑥 ∈ ℤ ) |
| 20 | 19 | zcnd | ⊢ ( 𝜑 → 𝑥 ∈ ℂ ) |
| 21 | 17 | nnne0d | ⊢ ( 𝜑 → 𝑡 ≠ 0 ) |
| 22 | 11 | nnne0d | ⊢ ( 𝜑 → 𝑦 ≠ 0 ) |
| 23 | 14 18 20 12 21 22 | divmuleqd | ⊢ ( 𝜑 → ( ( 𝑠 / 𝑡 ) = ( 𝑥 / 𝑦 ) ↔ ( 𝑠 · 𝑦 ) = ( 𝑥 · 𝑡 ) ) ) |
| 24 | 16 23 | mpbid | ⊢ ( 𝜑 → ( 𝑠 · 𝑦 ) = ( 𝑥 · 𝑡 ) ) |
| 25 | 15 24 | eqtrd | ⊢ ( 𝜑 → ( 𝑦 · 𝑠 ) = ( 𝑥 · 𝑡 ) ) |
| 26 | 25 | breq2d | ⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑦 · 𝑠 ) ↔ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑥 · 𝑡 ) ) ) |
| 27 | 26 | rabbidv | ⊢ ( 𝜑 → { 𝑧 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑦 · 𝑠 ) } = { 𝑧 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑥 · 𝑡 ) } ) |
| 28 | oveq2 | ⊢ ( 𝑛 = 𝑧 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑧 ) ) | |
| 29 | 28 | breq1d | ⊢ ( 𝑛 = 𝑧 → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) ↔ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑦 · 𝑠 ) ) ) |
| 30 | 29 | cbvrabv | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } = { 𝑧 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑦 · 𝑠 ) } |
| 31 | 28 | breq1d | ⊢ ( 𝑛 = 𝑧 → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) ↔ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑥 · 𝑡 ) ) ) |
| 32 | 31 | cbvrabv | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } = { 𝑧 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑥 · 𝑡 ) } |
| 33 | 27 30 32 | 3eqtr4g | ⊢ ( 𝜑 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } ) |
| 34 | 33 | supeq1d | ⊢ ( 𝜑 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } , ℝ , < ) ) |
| 35 | 11 | nnzd | ⊢ ( 𝜑 → 𝑦 ∈ ℤ ) |
| 36 | 18 21 | div0d | ⊢ ( 𝜑 → ( 0 / 𝑡 ) = 0 ) |
| 37 | oveq1 | ⊢ ( 𝑠 = 0 → ( 𝑠 / 𝑡 ) = ( 0 / 𝑡 ) ) | |
| 38 | 37 | eqeq1d | ⊢ ( 𝑠 = 0 → ( ( 𝑠 / 𝑡 ) = 0 ↔ ( 0 / 𝑡 ) = 0 ) ) |
| 39 | 36 38 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑠 = 0 → ( 𝑠 / 𝑡 ) = 0 ) ) |
| 40 | 10 | eqeq1d | ⊢ ( 𝜑 → ( 𝑁 = 0 ↔ ( 𝑠 / 𝑡 ) = 0 ) ) |
| 41 | 39 40 | sylibrd | ⊢ ( 𝜑 → ( 𝑠 = 0 → 𝑁 = 0 ) ) |
| 42 | 41 | necon3d | ⊢ ( 𝜑 → ( 𝑁 ≠ 0 → 𝑠 ≠ 0 ) ) |
| 43 | 6 42 | mpd | ⊢ ( 𝜑 → 𝑠 ≠ 0 ) |
| 44 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } , ℝ , < ) | |
| 45 | 2 3 44 | pcpremul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑠 ≠ 0 ) ) → ( 𝑇 + 𝑈 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } , ℝ , < ) ) |
| 46 | 5 35 22 13 43 45 | syl122anc | ⊢ ( 𝜑 → ( 𝑇 + 𝑈 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } , ℝ , < ) ) |
| 47 | 12 22 | div0d | ⊢ ( 𝜑 → ( 0 / 𝑦 ) = 0 ) |
| 48 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = ( 0 / 𝑦 ) ) | |
| 49 | 48 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 / 𝑦 ) = 0 ↔ ( 0 / 𝑦 ) = 0 ) ) |
| 50 | 47 49 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = 0 ) ) |
| 51 | 8 | eqeq1d | ⊢ ( 𝜑 → ( 𝑁 = 0 ↔ ( 𝑥 / 𝑦 ) = 0 ) ) |
| 52 | 50 51 | sylibrd | ⊢ ( 𝜑 → ( 𝑥 = 0 → 𝑁 = 0 ) ) |
| 53 | 52 | necon3d | ⊢ ( 𝜑 → ( 𝑁 ≠ 0 → 𝑥 ≠ 0 ) ) |
| 54 | 6 53 | mpd | ⊢ ( 𝜑 → 𝑥 ≠ 0 ) |
| 55 | 17 | nnzd | ⊢ ( 𝜑 → 𝑡 ∈ ℤ ) |
| 56 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } , ℝ , < ) | |
| 57 | 1 4 56 | pcpremul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑡 ∈ ℤ ∧ 𝑡 ≠ 0 ) ) → ( 𝑆 + 𝑉 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } , ℝ , < ) ) |
| 58 | 5 19 54 55 21 57 | syl122anc | ⊢ ( 𝜑 → ( 𝑆 + 𝑉 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } , ℝ , < ) ) |
| 59 | 34 46 58 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑇 + 𝑈 ) = ( 𝑆 + 𝑉 ) ) |
| 60 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 61 | 5 60 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 62 | eqid | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } | |
| 63 | 62 2 | pcprecl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) → ( 𝑇 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑇 ) ∥ 𝑦 ) ) |
| 64 | 63 | simpld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) → 𝑇 ∈ ℕ0 ) |
| 65 | 61 35 22 64 | syl12anc | ⊢ ( 𝜑 → 𝑇 ∈ ℕ0 ) |
| 66 | 65 | nn0cnd | ⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 67 | eqid | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } | |
| 68 | 67 3 | pcprecl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑠 ≠ 0 ) ) → ( 𝑈 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑈 ) ∥ 𝑠 ) ) |
| 69 | 68 | simpld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑠 ≠ 0 ) ) → 𝑈 ∈ ℕ0 ) |
| 70 | 61 13 43 69 | syl12anc | ⊢ ( 𝜑 → 𝑈 ∈ ℕ0 ) |
| 71 | 70 | nn0cnd | ⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
| 72 | eqid | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } | |
| 73 | 72 1 | pcprecl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑥 ) ) |
| 74 | 73 | simpld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → 𝑆 ∈ ℕ0 ) |
| 75 | 61 19 54 74 | syl12anc | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
| 76 | 75 | nn0cnd | ⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 77 | eqid | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } | |
| 78 | 77 4 | pcprecl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑡 ∈ ℤ ∧ 𝑡 ≠ 0 ) ) → ( 𝑉 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑉 ) ∥ 𝑡 ) ) |
| 79 | 78 | simpld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑡 ∈ ℤ ∧ 𝑡 ≠ 0 ) ) → 𝑉 ∈ ℕ0 ) |
| 80 | 61 55 21 79 | syl12anc | ⊢ ( 𝜑 → 𝑉 ∈ ℕ0 ) |
| 81 | 80 | nn0cnd | ⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
| 82 | 66 71 76 81 | addsubeq4d | ⊢ ( 𝜑 → ( ( 𝑇 + 𝑈 ) = ( 𝑆 + 𝑉 ) ↔ ( 𝑆 − 𝑇 ) = ( 𝑈 − 𝑉 ) ) ) |
| 83 | 59 82 | mpbid | ⊢ ( 𝜑 → ( 𝑆 − 𝑇 ) = ( 𝑈 − 𝑉 ) ) |