This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcqmul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℚ ) | |
| 2 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| 4 | simp3l | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℚ ) | |
| 5 | elq | ⊢ ( 𝐵 ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) | |
| 6 | 4 5 | sylib | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) |
| 7 | reeanv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∈ ℤ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ) | |
| 8 | reeanv | ⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ) | |
| 9 | simp2r | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ≠ 0 ) | |
| 10 | simp3r | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) | |
| 11 | 9 10 | jca | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) |
| 13 | simp1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝑃 ∈ ℙ ) | |
| 14 | simprl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑦 ∈ ℕ ) | |
| 15 | 14 | nncnd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
| 16 | 14 | nnne0d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑦 ≠ 0 ) |
| 17 | 15 16 | div0d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 0 / 𝑦 ) = 0 ) |
| 18 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = ( 0 / 𝑦 ) ) | |
| 19 | 18 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 / 𝑦 ) = 0 ↔ ( 0 / 𝑦 ) = 0 ) ) |
| 20 | 17 19 | syl5ibrcom | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = 0 ) ) |
| 21 | 20 | necon3d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) ≠ 0 → 𝑥 ≠ 0 ) ) |
| 22 | simprr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑤 ∈ ℕ ) | |
| 23 | 22 | nncnd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑤 ∈ ℂ ) |
| 24 | 22 | nnne0d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → 𝑤 ≠ 0 ) |
| 25 | 23 24 | div0d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 0 / 𝑤 ) = 0 ) |
| 26 | oveq1 | ⊢ ( 𝑧 = 0 → ( 𝑧 / 𝑤 ) = ( 0 / 𝑤 ) ) | |
| 27 | 26 | eqeq1d | ⊢ ( 𝑧 = 0 → ( ( 𝑧 / 𝑤 ) = 0 ↔ ( 0 / 𝑤 ) = 0 ) ) |
| 28 | 25 27 | syl5ibrcom | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑧 = 0 → ( 𝑧 / 𝑤 ) = 0 ) ) |
| 29 | 28 | necon3d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑧 / 𝑤 ) ≠ 0 → 𝑧 ≠ 0 ) ) |
| 30 | simpll | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑃 ∈ ℙ ) | |
| 31 | simplrl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑥 ∈ ℤ ) | |
| 32 | simplrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑧 ∈ ℤ ) | |
| 33 | 31 32 | zmulcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑥 · 𝑧 ) ∈ ℤ ) |
| 34 | 31 | zcnd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑥 ∈ ℂ ) |
| 35 | 32 | zcnd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑧 ∈ ℂ ) |
| 36 | simprrl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑥 ≠ 0 ) | |
| 37 | simprrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑧 ≠ 0 ) | |
| 38 | 34 35 36 37 | mulne0d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑥 · 𝑧 ) ≠ 0 ) |
| 39 | 14 | adantrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑦 ∈ ℕ ) |
| 40 | 22 | adantrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑤 ∈ ℕ ) |
| 41 | 39 40 | nnmulcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑦 · 𝑤 ) ∈ ℕ ) |
| 42 | pcdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑥 · 𝑧 ) ∈ ℤ ∧ ( 𝑥 · 𝑧 ) ≠ 0 ) ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ) → ( 𝑃 pCnt ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 · 𝑧 ) ) − ( 𝑃 pCnt ( 𝑦 · 𝑤 ) ) ) ) | |
| 43 | 30 33 38 41 42 | syl121anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 · 𝑧 ) ) − ( 𝑃 pCnt ( 𝑦 · 𝑤 ) ) ) ) |
| 44 | pcmul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝑥 · 𝑧 ) ) = ( ( 𝑃 pCnt 𝑥 ) + ( 𝑃 pCnt 𝑧 ) ) ) | |
| 45 | 30 31 36 32 37 44 | syl122anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( 𝑥 · 𝑧 ) ) = ( ( 𝑃 pCnt 𝑥 ) + ( 𝑃 pCnt 𝑧 ) ) ) |
| 46 | 39 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑦 ∈ ℤ ) |
| 47 | 16 | adantrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑦 ≠ 0 ) |
| 48 | 40 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑤 ∈ ℤ ) |
| 49 | 24 | adantrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑤 ≠ 0 ) |
| 50 | pcmul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑤 ∈ ℤ ∧ 𝑤 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝑦 · 𝑤 ) ) = ( ( 𝑃 pCnt 𝑦 ) + ( 𝑃 pCnt 𝑤 ) ) ) | |
| 51 | 30 46 47 48 49 50 | syl122anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( 𝑦 · 𝑤 ) ) = ( ( 𝑃 pCnt 𝑦 ) + ( 𝑃 pCnt 𝑤 ) ) ) |
| 52 | 45 51 | oveq12d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( ( 𝑃 pCnt ( 𝑥 · 𝑧 ) ) − ( 𝑃 pCnt ( 𝑦 · 𝑤 ) ) ) = ( ( ( 𝑃 pCnt 𝑥 ) + ( 𝑃 pCnt 𝑧 ) ) − ( ( 𝑃 pCnt 𝑦 ) + ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 53 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) | |
| 54 | 30 31 36 53 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) |
| 55 | 54 | nn0cnd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℂ ) |
| 56 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℕ0 ) | |
| 57 | 30 32 37 56 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℕ0 ) |
| 58 | 57 | nn0cnd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℂ ) |
| 59 | 30 39 | pccld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℕ0 ) |
| 60 | 59 | nn0cnd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℂ ) |
| 61 | 30 40 | pccld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑤 ) ∈ ℕ0 ) |
| 62 | 61 | nn0cnd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt 𝑤 ) ∈ ℂ ) |
| 63 | 55 58 60 62 | addsub4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( ( ( 𝑃 pCnt 𝑥 ) + ( 𝑃 pCnt 𝑧 ) ) − ( ( 𝑃 pCnt 𝑦 ) + ( 𝑃 pCnt 𝑤 ) ) ) = ( ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) + ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 64 | 43 52 63 | 3eqtrd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) = ( ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) + ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 65 | 15 | adantrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑦 ∈ ℂ ) |
| 66 | 23 | adantrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → 𝑤 ∈ ℂ ) |
| 67 | 34 65 35 66 47 49 | divmuldivd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) = ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) |
| 68 | 67 | oveq2d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( 𝑃 pCnt ( ( 𝑥 · 𝑧 ) / ( 𝑦 · 𝑤 ) ) ) ) |
| 69 | pcdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) | |
| 70 | 30 31 36 39 69 | syl121anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
| 71 | pcdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ∧ 𝑤 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) | |
| 72 | 30 32 37 40 71 | syl121anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
| 73 | 70 72 | oveq12d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) = ( ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) + ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) ) |
| 74 | 64 68 73 | 3eqtr4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) ) ) → ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) |
| 75 | 74 | expr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 ≠ 0 ∧ 𝑧 ≠ 0 ) → ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) ) |
| 76 | 21 29 75 | syl2and | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( ( 𝑥 / 𝑦 ) ≠ 0 ∧ ( 𝑧 / 𝑤 ) ≠ 0 ) → ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) ) |
| 77 | neeq1 | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ≠ 0 ↔ ( 𝑥 / 𝑦 ) ≠ 0 ) ) | |
| 78 | neeq1 | ⊢ ( 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐵 ≠ 0 ↔ ( 𝑧 / 𝑤 ) ≠ 0 ) ) | |
| 79 | 77 78 | bi2anan9 | ⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ↔ ( ( 𝑥 / 𝑦 ) ≠ 0 ∧ ( 𝑧 / 𝑤 ) ≠ 0 ) ) ) |
| 80 | oveq12 | ⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝐴 · 𝐵 ) = ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) | |
| 81 | 80 | oveq2d | ⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) ) |
| 82 | oveq2 | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) | |
| 83 | oveq2 | ⊢ ( 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝑃 pCnt 𝐵 ) = ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) | |
| 84 | 82 83 | oveqan12d | ⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) |
| 85 | 81 84 | eqeq12d | ⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ↔ ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) ) |
| 86 | 79 85 | imbi12d | ⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ↔ ( ( ( 𝑥 / 𝑦 ) ≠ 0 ∧ ( 𝑧 / 𝑤 ) ≠ 0 ) → ( 𝑃 pCnt ( ( 𝑥 / 𝑦 ) · ( 𝑧 / 𝑤 ) ) ) = ( ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) + ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) ) ) ) |
| 87 | 76 86 | syl5ibrcom | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) ) |
| 88 | 13 87 | sylanl1 | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) ) |
| 89 | 12 88 | mpid | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 90 | 89 | rexlimdvva | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 91 | 8 90 | biimtrrid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 92 | 91 | rexlimdvva | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∈ ℤ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 93 | 7 92 | biimtrrid | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 94 | 3 6 93 | mp2and | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) |