This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordthmeo . (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordthmeo.1 | ⊢ 𝑋 = dom 𝑅 | |
| ordthmeo.2 | ⊢ 𝑌 = dom 𝑆 | ||
| Assertion | ordthmeolem | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → 𝐹 ∈ ( ( ordTop ‘ 𝑅 ) Cn ( ordTop ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordthmeo.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | ordthmeo.2 | ⊢ 𝑌 = dom 𝑆 | |
| 3 | isof1o | ⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 5 | f1of | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 7 | fimacnv | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑌 ) = 𝑋 ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ( ◡ 𝐹 “ 𝑌 ) = 𝑋 ) |
| 9 | 1 | ordttopon | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 11 | toponmax | ⊢ ( ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ ( ordTop ‘ 𝑅 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → 𝑋 ∈ ( ordTop ‘ 𝑅 ) ) |
| 13 | 8 12 | eqeltrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ( ◡ 𝐹 “ 𝑌 ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 14 | elsni | ⊢ ( 𝑧 ∈ { 𝑌 } → 𝑧 = 𝑌 ) | |
| 15 | 14 | imaeq2d | ⊢ ( 𝑧 ∈ { 𝑌 } → ( ◡ 𝐹 “ 𝑧 ) = ( ◡ 𝐹 “ 𝑌 ) ) |
| 16 | 15 | eleq1d | ⊢ ( 𝑧 ∈ { 𝑌 } → ( ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ↔ ( ◡ 𝐹 “ 𝑌 ) ∈ ( ordTop ‘ 𝑅 ) ) ) |
| 17 | 13 16 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ( 𝑧 ∈ { 𝑌 } → ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ) ) |
| 18 | 17 | ralrimiv | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ∀ 𝑧 ∈ { 𝑌 } ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 19 | cnvimass | ⊢ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ⊆ dom 𝐹 | |
| 20 | f1odm | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 21 | 4 20 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → dom 𝐹 = 𝑋 ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → dom 𝐹 = 𝑋 ) |
| 23 | 19 22 | sseqtrid | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ⊆ 𝑋 ) |
| 24 | sseqin2 | ⊢ ( ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ⊆ 𝑋 ↔ ( 𝑋 ∩ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ) = ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ) | |
| 25 | 23 24 | sylib | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑋 ∩ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ) = ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ) |
| 26 | 4 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 27 | f1ofn | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 Fn 𝑋 ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 29 | elpreima | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ) ) |
| 31 | simpr | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) | |
| 32 | 31 | biantrurd | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ) ) |
| 33 | 6 | adantr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 34 | 33 | ffvelcdmda | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) |
| 35 | breq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → ( 𝑦 𝑆 𝑥 ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 𝑥 ) ) | |
| 36 | 35 | notbid | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → ( ¬ 𝑦 𝑆 𝑥 ↔ ¬ ( 𝐹 ‘ 𝑧 ) 𝑆 𝑥 ) ) |
| 37 | 36 | elrab3 | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 → ( ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ↔ ¬ ( 𝐹 ‘ 𝑧 ) 𝑆 𝑥 ) ) |
| 38 | 34 37 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ↔ ¬ ( 𝐹 ‘ 𝑧 ) 𝑆 𝑥 ) ) |
| 39 | simpll3 | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) | |
| 40 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | |
| 41 | f1of | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 42 | 4 40 41 | 3syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 43 | 42 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
| 44 | 43 | adantr | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
| 45 | isorel | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) → ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) | |
| 46 | 39 31 44 45 | syl12anc | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
| 47 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) | |
| 48 | 4 47 | sylan | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 49 | 48 | adantr | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 50 | 49 | breq2d | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑆 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 𝑥 ) ) |
| 51 | 46 50 | bitrd | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑧 ) 𝑆 𝑥 ) ) |
| 52 | 51 | notbid | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑥 ) ↔ ¬ ( 𝐹 ‘ 𝑧 ) 𝑆 𝑥 ) ) |
| 53 | 38 52 | bitr4d | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ↔ ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 54 | 30 32 53 | 3bitr2d | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ↔ ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 55 | 54 | rabbi2dva | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑋 ∩ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ) = { 𝑧 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑥 ) } ) |
| 56 | 25 55 | eqtr3d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) = { 𝑧 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑥 ) } ) |
| 57 | simpl1 | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ∈ 𝑉 ) | |
| 58 | 1 | ordtopn1 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) → { 𝑧 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑥 ) } ∈ ( ordTop ‘ 𝑅 ) ) |
| 59 | 57 43 58 | syl2anc | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → { 𝑧 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 ( ◡ 𝐹 ‘ 𝑥 ) } ∈ ( ordTop ‘ 𝑅 ) ) |
| 60 | 56 59 | eqeltrd | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 61 | 60 | ralrimiva | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ∀ 𝑥 ∈ 𝑌 ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 62 | dmexg | ⊢ ( 𝑆 ∈ 𝑊 → dom 𝑆 ∈ V ) | |
| 63 | 2 62 | eqeltrid | ⊢ ( 𝑆 ∈ 𝑊 → 𝑌 ∈ V ) |
| 64 | 63 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → 𝑌 ∈ V ) |
| 65 | rabexg | ⊢ ( 𝑌 ∈ V → { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ∈ V ) | |
| 66 | 64 65 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ∈ V ) |
| 67 | 66 | ralrimivw | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ∀ 𝑥 ∈ 𝑌 { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ∈ V ) |
| 68 | eqid | ⊢ ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) = ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) | |
| 69 | imaeq2 | ⊢ ( 𝑧 = { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } → ( ◡ 𝐹 “ 𝑧 ) = ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ) | |
| 70 | 69 | eleq1d | ⊢ ( 𝑧 = { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } → ( ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ↔ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∈ ( ordTop ‘ 𝑅 ) ) ) |
| 71 | 68 70 | ralrnmptw | ⊢ ( ∀ 𝑥 ∈ 𝑌 { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝑌 ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∈ ( ordTop ‘ 𝑅 ) ) ) |
| 72 | 67 71 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝑌 ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∈ ( ordTop ‘ 𝑅 ) ) ) |
| 73 | 61 72 | mpbird | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 74 | cnvimass | ⊢ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ⊆ dom 𝐹 | |
| 75 | 74 22 | sseqtrid | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ⊆ 𝑋 ) |
| 76 | sseqin2 | ⊢ ( ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ⊆ 𝑋 ↔ ( 𝑋 ∩ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) = ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) | |
| 77 | 75 76 | sylib | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑋 ∩ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) = ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) |
| 78 | elpreima | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) | |
| 79 | 28 78 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) |
| 80 | 31 | biantrurd | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) |
| 81 | breq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 𝑆 𝑦 ↔ 𝑥 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) | |
| 82 | 81 | notbid | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → ( ¬ 𝑥 𝑆 𝑦 ↔ ¬ 𝑥 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 83 | 82 | elrab3 | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 → ( ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ↔ ¬ 𝑥 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 84 | 34 83 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ↔ ¬ 𝑥 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 85 | isorel | ⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝑅 𝑧 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) | |
| 86 | 39 44 31 85 | syl12anc | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝑅 𝑧 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 87 | 49 | breq1d | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐹 ‘ 𝑧 ) ↔ 𝑥 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 88 | 86 87 | bitrd | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) 𝑅 𝑧 ↔ 𝑥 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 89 | 88 | notbid | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) 𝑅 𝑧 ↔ ¬ 𝑥 𝑆 ( 𝐹 ‘ 𝑧 ) ) ) |
| 90 | 84 89 | bitr4d | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ↔ ¬ ( ◡ 𝐹 ‘ 𝑥 ) 𝑅 𝑧 ) ) |
| 91 | 79 80 90 | 3bitr2d | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ↔ ¬ ( ◡ 𝐹 ‘ 𝑥 ) 𝑅 𝑧 ) ) |
| 92 | 91 | rabbi2dva | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑋 ∩ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) = { 𝑧 ∈ 𝑋 ∣ ¬ ( ◡ 𝐹 ‘ 𝑥 ) 𝑅 𝑧 } ) |
| 93 | 77 92 | eqtr3d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) = { 𝑧 ∈ 𝑋 ∣ ¬ ( ◡ 𝐹 ‘ 𝑥 ) 𝑅 𝑧 } ) |
| 94 | 1 | ordtopn2 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) → { 𝑧 ∈ 𝑋 ∣ ¬ ( ◡ 𝐹 ‘ 𝑥 ) 𝑅 𝑧 } ∈ ( ordTop ‘ 𝑅 ) ) |
| 95 | 57 43 94 | syl2anc | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → { 𝑧 ∈ 𝑋 ∣ ¬ ( ◡ 𝐹 ‘ 𝑥 ) 𝑅 𝑧 } ∈ ( ordTop ‘ 𝑅 ) ) |
| 96 | 93 95 | eqeltrd | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 97 | 96 | ralrimiva | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ∀ 𝑥 ∈ 𝑌 ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 98 | rabexg | ⊢ ( 𝑌 ∈ V → { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ∈ V ) | |
| 99 | 64 98 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ∈ V ) |
| 100 | 99 | ralrimivw | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ∀ 𝑥 ∈ 𝑌 { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ∈ V ) |
| 101 | eqid | ⊢ ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) = ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) | |
| 102 | imaeq2 | ⊢ ( 𝑧 = { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } → ( ◡ 𝐹 “ 𝑧 ) = ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) | |
| 103 | 102 | eleq1d | ⊢ ( 𝑧 = { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } → ( ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ↔ ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ∈ ( ordTop ‘ 𝑅 ) ) ) |
| 104 | 101 103 | ralrnmptw | ⊢ ( ∀ 𝑥 ∈ 𝑌 { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝑌 ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ∈ ( ordTop ‘ 𝑅 ) ) ) |
| 105 | 100 104 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝑌 ( ◡ 𝐹 “ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ∈ ( ordTop ‘ 𝑅 ) ) ) |
| 106 | 97 105 | mpbird | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 107 | ralunb | ⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ↔ ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ) ) | |
| 108 | 73 106 107 | sylanbrc | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 109 | ralunb | ⊢ ( ∀ 𝑧 ∈ ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ↔ ( ∀ 𝑧 ∈ { 𝑌 } ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ∧ ∀ 𝑧 ∈ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ) ) | |
| 110 | 18 108 109 | sylanbrc | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ∀ 𝑧 ∈ ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ) |
| 111 | eqid | ⊢ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) = ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) | |
| 112 | eqid | ⊢ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) = ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) | |
| 113 | 2 111 112 | ordtuni | ⊢ ( 𝑆 ∈ 𝑊 → 𝑌 = ∪ ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ) |
| 114 | 113 63 | eqeltrrd | ⊢ ( 𝑆 ∈ 𝑊 → ∪ ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ∈ V ) |
| 115 | uniexb | ⊢ ( ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ∈ V ↔ ∪ ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ∈ V ) | |
| 116 | 114 115 | sylibr | ⊢ ( 𝑆 ∈ 𝑊 → ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ∈ V ) |
| 117 | 116 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ∈ V ) |
| 118 | 2 111 112 | ordtval | ⊢ ( 𝑆 ∈ 𝑊 → ( ordTop ‘ 𝑆 ) = ( topGen ‘ ( fi ‘ ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ) ) ) |
| 119 | 118 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ( ordTop ‘ 𝑆 ) = ( topGen ‘ ( fi ‘ ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ) ) ) |
| 120 | 2 | ordttopon | ⊢ ( 𝑆 ∈ 𝑊 → ( ordTop ‘ 𝑆 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 121 | 120 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ( ordTop ‘ 𝑆 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 122 | 10 117 119 121 | subbascn | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → ( 𝐹 ∈ ( ( ordTop ‘ 𝑅 ) Cn ( ordTop ‘ 𝑆 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ ( { 𝑌 } ∪ ( ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑦 𝑆 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑌 ↦ { 𝑦 ∈ 𝑌 ∣ ¬ 𝑥 𝑆 𝑦 } ) ) ) ( ◡ 𝐹 “ 𝑧 ) ∈ ( ordTop ‘ 𝑅 ) ) ) ) |
| 123 | 6 110 122 | mpbir2and | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅 , 𝑆 ( 𝑋 , 𝑌 ) ) → 𝐹 ∈ ( ( ordTop ‘ 𝑅 ) Cn ( ordTop ‘ 𝑆 ) ) ) |