This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upward ray ( P , +oo ) is open. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | |
| Assertion | ordtopn1 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ∈ ( ordTop ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | eqid | ⊢ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) = ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | |
| 3 | eqid | ⊢ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | |
| 4 | 1 2 3 | ordtuni | ⊢ ( 𝑅 ∈ 𝑉 → 𝑋 = ∪ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → 𝑋 = ∪ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) |
| 6 | dmexg | ⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) | |
| 7 | 1 6 | eqeltrid | ⊢ ( 𝑅 ∈ 𝑉 → 𝑋 ∈ V ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → 𝑋 ∈ V ) |
| 9 | 5 8 | eqeltrrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ∪ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ∈ V ) |
| 10 | uniexb | ⊢ ( ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ∈ V ↔ ∪ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ∈ V ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ∈ V ) |
| 12 | ssfii | ⊢ ( ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ∈ V → ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ) |
| 14 | fibas | ⊢ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ∈ TopBases | |
| 15 | bastg | ⊢ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ∈ TopBases → ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ) |
| 17 | 13 16 | sstrdi | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ) ) |
| 18 | 1 2 3 | ordtval | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) ) ) |
| 20 | 17 19 | sseqtrrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ⊆ ( ordTop ‘ 𝑅 ) ) |
| 21 | ssun2 | ⊢ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ⊆ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) | |
| 22 | ssun1 | ⊢ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ⊆ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) | |
| 23 | simpr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) | |
| 24 | eqidd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } = { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ) | |
| 25 | breq2 | ⊢ ( 𝑦 = 𝑃 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑃 ) ) | |
| 26 | 25 | notbid | ⊢ ( 𝑦 = 𝑃 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑥 𝑅 𝑃 ) ) |
| 27 | 26 | rabbidv | ⊢ ( 𝑦 = 𝑃 → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } = { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ) |
| 28 | 27 | rspceeqv | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } = { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ) → ∃ 𝑦 ∈ 𝑋 { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } = { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
| 29 | 23 24 28 | syl2anc | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } = { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
| 30 | rabexg | ⊢ ( 𝑋 ∈ V → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ∈ V ) | |
| 31 | eqid | ⊢ ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) = ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | |
| 32 | 31 | elrnmpt | ⊢ ( { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ∈ V → ( { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ∈ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ↔ ∃ 𝑦 ∈ 𝑋 { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } = { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 33 | 8 30 32 | 3syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → ( { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ∈ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ↔ ∃ 𝑦 ∈ 𝑋 { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } = { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 34 | 29 33 | mpbird | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ∈ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 35 | 22 34 | sselid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ∈ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) |
| 36 | 21 35 | sselid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ∈ ( { 𝑋 } ∪ ( ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑦 ∈ 𝑋 ↦ { 𝑥 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) ) |
| 37 | 20 36 | sseldd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑃 } ∈ ( ordTop ‘ 𝑅 ) ) |